Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio.
Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio.
J Biomed Mater Res A. 2020 May;108(5):1223-1230. doi: 10.1002/jbm.a.36896. Epub 2020 Feb 14.
Control of cells behavior through topography of substrates is an important theme in biomedical applications. Among many materials used as substrates, polymers show advantages since they can be tailored by chemical functionalization. Fabrication of polymer substrates with nano- and microscale topography requires processing by lithography, microprinting, etching, and so forth. In this work, we introduce a different approach based on anisotropic elastic properties of polymerized smectic A (SmA) liquid crystal elastomer (LCE). When the SmA liquid crystal coating is deposited onto a substrate with planar alignment of the molecules, it develops nanogrooves at its free surface. After photopolymerization, these nanogrooves show an excellent ability to align human dermal fibroblasts over large areas. The alignment quality is good for both bare SmA LCE substrates and for substrates coated with fibronectin. The SmA LCE nano-topographies show a high potential for tissue engineering.
通过基底的形貌来控制细胞行为是生物医学应用中的一个重要主题。在用作基底的众多材料中,聚合物具有优势,因为它们可以通过化学功能化进行定制。具有纳米和微尺度形貌的聚合物基底的制造需要通过光刻、微印刷、蚀刻等工艺来完成。在这项工作中,我们介绍了一种基于聚合向列相 A (SmA)液晶弹性体 (LCE)各向异性弹性特性的不同方法。当 SmA 液晶涂层沉积到分子具有平面排列的基底上时,它会在自由表面形成纳米凹槽。光聚合后,这些纳米凹槽具有在较大区域内对齐人真皮成纤维细胞的优异能力。对于裸露的 SmA LCE 基底和涂覆有纤连蛋白的基底,这种对齐质量都很好。SmA LCE 纳米形貌在组织工程中具有很高的潜力。