Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Université du Québec, Québec, QC, G1K 9A9, Canada; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada.
Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Université du Québec, Québec, QC, G1K 9A9, Canada; Alberta Environment and Parks, Environmental Monitoring and Science Division, Calgary, AB, T2E 7L7, Canada.
Chemosphere. 2020 Jun;248:126001. doi: 10.1016/j.chemosphere.2020.126001. Epub 2020 Jan 23.
Mercury (Hg) transformations in sediments are key factors in the Hg exposure pathway for wildlife and humans yet are poorly characterized in Arctic lakes. As the Arctic is rapidly warming, it is important to understand how the rates of Hg methylation and demethylation (wich determine Hg bioavailability) change with temperature in lake sediments. Methylation and demethylation potentials were determined for littoral sediments (2.5 m water depth) in two deep and two shallow lakes in the Canadian Arctic using Hg stable isotope tracers at incubation temperatures of 4, 8, or 16 °C for 24 h. Compared to sediments from other regions, Hg methylation and demethylation potentials in these sediments are low. The maximum depth of the lake from which sediment was collected exerted a stronger influence over methylation potential than sediment Hg concentration or organic matter content; the shallowest lake had the highest Hg methylation potential. Sediments from the shallowest lake also demonstrated the greatest response to the temperature treatments, with significantly higher methylation potentials in the 8 and 16 °C treatments. Sediments from the deep lakes demonstrated greater demethylation potentials than shallow lakes. The methylmercury to total Hg ratio in sediments supported the measured transformation potentials as the lake with the greatest methylation potential had the highest ratio. This study supports previous works indicating that Hg methylation potential may increase as the Arctic warms, but demethylation potential does not respond to warming to the same degree, indicating that Hg methylation may predominate in warming Arctic sediments.
汞(Hg)在沉积物中的转化是野生动物和人类暴露于 Hg 途径中的关键因素,但在北极湖泊中却知之甚少。随着北极地区迅速变暖,了解 Hg 甲基化和去甲基化(决定 Hg 生物利用度)的速率如何随温度在湖泊沉积物中变化变得尤为重要。使用 Hg 稳定同位素示踪剂,在 4、8 或 16°C 的孵育温度下,对加拿大北极地区两个深湖和两个浅湖的滨岸沉积物(水深 2.5 米)进行了 24 小时的甲基化和去甲基化潜力测定。与其他地区的沉积物相比,这些沉积物中的 Hg 甲基化和去甲基化潜力较低。从采集沉积物的湖泊的最大深度对甲基化潜力的影响大于沉积物 Hg 浓度或有机质含量;最浅的湖泊具有最高的 Hg 甲基化潜力。最浅湖泊的沉积物对温度处理的响应最大,8°C 和 16°C 处理的甲基化潜力明显更高。深湖沉积物的去甲基化潜力大于浅湖沉积物。沉积物中甲基汞与总 Hg 的比值支持了所测量的转化潜力,因为具有最大甲基化潜力的湖泊具有最高的比值。本研究支持了先前的研究工作,表明随着北极变暖,Hg 甲基化潜力可能会增加,但去甲基化潜力不会以相同的程度对变暖做出响应,这表明在变暖的北极沉积物中,Hg 甲基化可能占主导地位。