Appel Institute for Alzheimer's Disease Research, and Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY, USA.
Nat Struct Mol Biol. 2020 Feb;27(2):192-201. doi: 10.1038/s41594-020-0375-y. Epub 2020 Feb 10.
Point mutations in cysteine string protein-α (CSPα) cause dominantly inherited adult-onset neuronal ceroid lipofuscinosis (ANCL), a rapidly progressing and lethal neurodegenerative disease with no treatment. ANCL mutations are proposed to trigger CSPα aggregation/oligomerization, but the mechanism of oligomer formation remains unclear. Here we use purified proteins, mouse primary neurons and patient-derived induced neurons to show that the normally palmitoylated cysteine string region of CSPα loses palmitoylation in ANCL mutants. This allows oligomerization of mutant CSPα via ectopic binding of iron-sulfur (Fe-S) clusters. The resulting oligomerization of mutant CSPα causes its mislocalization and consequent loss of its synaptic SNARE-chaperoning function. We then find that pharmacological iron chelation mitigates the oligomerization of mutant CSPα, accompanied by partial rescue of the downstream SNARE defects and the pathological hallmark of lipofuscin accumulation. Thus, the iron chelators deferiprone (L1) and deferoxamine (Dfx), which are already used to treat iron overload in humans, offer a new approach for treating ANCL.
半胱氨酸-string 蛋白-α(CSPα)中的点突变导致显性遗传的成年起病神经元蜡样脂褐质沉积症(ANCL),这是一种进行性迅速且致命的神经退行性疾病,目前尚无治疗方法。据推测,ANCL 突变会触发 CSPα 的聚集/寡聚化,但寡聚体形成的机制仍不清楚。在这里,我们使用纯化的蛋白质、小鼠原代神经元和患者来源的诱导神经元表明,CSPα 中正常棕榈酰化的半胱氨酸串区在 ANCL 突变体中失去棕榈酰化。这使得突变型 CSPα 通过铁硫(Fe-S)簇的异位结合进行寡聚化。突变型 CSPα 的这种寡聚化导致其定位错误,并导致其突触 SNARE 伴侣功能丧失。然后,我们发现药理铁螯合可以减轻突变型 CSPα 的寡聚化,同时伴有 SNARE 缺陷的部分恢复和脂褐素积累的病理标志。因此,已经用于治疗人类铁过载的铁螯合剂地拉罗司(L1)和去铁胺(Dfx)为治疗 ANCL 提供了一种新方法。