Suppr超能文献

用于压缩感知磁共振成像重建的高效方向性驱动字典学习

Efficient directionality-driven dictionary learning for compressive sensing magnetic resonance imaging reconstruction.

作者信息

Arun Anupama, Thomas Thomas James, Rani J Sheeba, Gorthi R K Sai Subrahmanyam

机构信息

IIST Trivandrum, Department of Avionics, Kerala, India.

IIT Tirupati, Department of Electrical Engineering, Andhra Pradesh, India.

出版信息

J Med Imaging (Bellingham). 2020 Jan;7(1):014002. doi: 10.1117/1.JMI.7.1.014002. Epub 2020 Jan 24.

Abstract

Compressed sensing is an acquisition strategy that possesses great potential to accelerate magnetic resonance imaging (MRI) within the ambit of existing hardware, by enforcing sparsity on MR image slices. Compared to traditional reconstruction methods, dictionary learning-based reconstruction algorithms, which locally sparsify image patches, have been found to boost the reconstruction quality. However, due to the learning complexity, they have to be independently employed on successive MR undersampled slices one at a time. This causes them to forfeit prior knowledge of the anatomical structure of the region of interest. An MR reconstruction algorithm is proposed that employs the double sparsity model coupled with online sparse dictionary learning to learn directional features of the region under observation from existing prior knowledge. This is found to enhance the capability of sparsely representing directional features in an MR image and results in better reconstructions. The proposed framework is shown to have superior performance compared to state-of-art MRI reconstruction algorithms under noiseless and noisy conditions for various undersampling percentages and distinct scanning strategies.

摘要

压缩感知是一种采集策略,它通过对磁共振成像(MRI)图像切片施加稀疏性,在现有硬件范围内具有加速MRI的巨大潜力。与传统重建方法相比,基于字典学习的重建算法通过局部稀疏图像块来提高重建质量。然而,由于学习的复杂性,它们必须一次独立地应用于连续的MR欠采样切片。这使得它们无法利用感兴趣区域解剖结构的先验知识。本文提出了一种MR重建算法,该算法采用双稀疏模型结合在线稀疏字典学习,从现有先验知识中学习观察区域的方向特征。结果表明,该算法增强了在MR图像中稀疏表示方向特征的能力,从而实现了更好的重建。在无噪声和有噪声条件下,针对各种欠采样百分比和不同扫描策略,所提出的框架与当前最先进的MRI重建算法相比具有优越的性能。

相似文献

1
Efficient directionality-driven dictionary learning for compressive sensing magnetic resonance imaging reconstruction.
J Med Imaging (Bellingham). 2020 Jan;7(1):014002. doi: 10.1117/1.JMI.7.1.014002. Epub 2020 Jan 24.
2
[Compressed sensing magnetic resonance image reconstruction based on double sparse model].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018 Oct 25;35(5):688-696. doi: 10.7507/1001-5515.201607006.
3
Sparsity-promoting orthogonal dictionary updating for image reconstruction from highly undersampled magnetic resonance data.
Phys Med Biol. 2015 Jul 21;60(14):5359-80. doi: 10.1088/0031-9155/60/14/5359. Epub 2015 Jun 25.
4
Blind compressive sensing dynamic MRI.
IEEE Trans Med Imaging. 2013 Jun;32(6):1132-45. doi: 10.1109/TMI.2013.2255133. Epub 2013 Mar 27.
5
MR image reconstruction from highly undersampled k-space data by dictionary learning.
IEEE Trans Med Imaging. 2011 May;30(5):1028-41. doi: 10.1109/TMI.2010.2090538. Epub 2010 Nov 1.
6
Reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning.
Magn Reson Med. 2014 Mar;71(3):1285-98. doi: 10.1002/mrm.24734.
7
Bayesian nonparametric dictionary learning for compressed sensing MRI.
IEEE Trans Image Process. 2014 Dec;23(12):5007-19. doi: 10.1109/TIP.2014.2360122. Epub 2014 Sep 24.
8
Improved Reconstruction of MR Scanned Images by Using a Dictionary Learning Scheme.
Sensors (Basel). 2019 Apr 23;19(8):1918. doi: 10.3390/s19081918.
9
Self-prior image-guided MRI reconstruction with dictionary learning.
Med Phys. 2019 Feb;46(2):517-527. doi: 10.1002/mp.13337. Epub 2019 Jan 7.

本文引用的文献

1
Compressive sensing image recovery using dictionary learning and shape-adaptive DCT thresholding.
Magn Reson Imaging. 2019 Jan;55:60-71. doi: 10.1016/j.mri.2018.09.014. Epub 2018 Sep 19.
2
DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction.
IEEE Trans Med Imaging. 2018 Jun;37(6):1310-1321. doi: 10.1109/TMI.2017.2785879.
3
Fast Multiclass Dictionaries Learning With Geometrical Directions in MRI Reconstruction.
IEEE Trans Biomed Eng. 2016 Sep;63(9):1850-1861. doi: 10.1109/TBME.2015.2503756. Epub 2015 Nov 25.
4
Compressed sensing MRI: a review of the clinical literature.
Br J Radiol. 2015;88(1056):20150487. doi: 10.1259/bjr.20150487. Epub 2015 Sep 24.
5
Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator.
Med Image Anal. 2014 Aug;18(6):843-56. doi: 10.1016/j.media.2013.09.007. Epub 2013 Oct 16.
6
Undersampled MRI reconstruction with patch-based directional wavelets.
Magn Reson Imaging. 2012 Sep;30(7):964-77. doi: 10.1016/j.mri.2012.02.019. Epub 2012 Apr 13.
7
MR image reconstruction from highly undersampled k-space data by dictionary learning.
IEEE Trans Med Imaging. 2011 May;30(5):1028-41. doi: 10.1109/TMI.2010.2090538. Epub 2010 Nov 1.
8
Image quality assessment: from error visibility to structural similarity.
IEEE Trans Image Process. 2004 Apr;13(4):600-12. doi: 10.1109/tip.2003.819861.
9
Noise reduction for magnetic resonance images via adaptive multiscale products thresholding.
IEEE Trans Med Imaging. 2003 Sep;22(9):1089-99. doi: 10.1109/TMI.2003.816958.
10
Generalized autocalibrating partially parallel acquisitions (GRAPPA).
Magn Reson Med. 2002 Jun;47(6):1202-10. doi: 10.1002/mrm.10171.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验