Suppr超能文献

为历史治疗患者的二维放射治疗计划自动生成三维剂量重建数据。

Automatic generation of three-dimensional dose reconstruction data for two-dimensional radiotherapy plans for historically treated patients.

作者信息

Wang Ziyuan, Virgolin Marco, Bosman Peter A N, Crama Koen F, Balgobind Brian V, Bel Arjan, Alderliesten Tanja

机构信息

University of Amsterdam, Amsterdam UMC, Department of Radiation Oncology, Amsterdam, The Netherlands.

Centrum Wiskunde and Informatica, Life Sciences and Health Group, Amsterdam, The Netherlands.

出版信息

J Med Imaging (Bellingham). 2020 Jan;7(1):015001. doi: 10.1117/1.JMI.7.1.015001. Epub 2020 Feb 3.

Abstract

Performing large-scale three-dimensional radiation dose reconstruction for patients requires a large amount of manual work. We present an image processing-based pipeline to automatically reconstruct radiation dose. The pipeline was designed for childhood cancer survivors that received abdominal radiotherapy with anterior-to-posterior and posterior-to-anterior field set-up. First, anatomical landmarks are automatically identified on two-dimensional radiographs. Second, these landmarks are used to derive parameters to emulate the geometry of the plan on a surrogate computed tomography. Finally, the plan is emulated and used as input for dose calculation. For qualitative evaluation, 100 cases of automatic and manual plan emulations were assessed by two experienced radiation dosimetrists in a blinded comparison. The two radiation dosimetrists approved 100%/100% and 92%/91% of the automatic/manual plan emulations, respectively. Similar approval rates of 100% and 94% hold when the automatic pipeline is applied on another 50 cases. Further, quantitative comparisons resulted in on average difference in plan isocenter/borders, and in organ mean dose (prescribed dose: 14.4 Gy) calculated from the automatic and manual plan emulations. No statistically significant difference in terms of dose reconstruction accuracy was found for most organs at risk. Ultimately, our automatic pipeline results are of sufficient quality to enable effortless scaling of dose reconstruction data generation.

摘要

对患者进行大规模三维辐射剂量重建需要大量的人工操作。我们提出了一种基于图像处理的流程来自动重建辐射剂量。该流程是为接受前后野和后前野设置的腹部放疗的儿童癌症幸存者设计的。首先,在二维X光片上自动识别解剖标志。其次,利用这些标志导出参数,以在替代计算机断层扫描上模拟计划的几何形状。最后,模拟该计划并将其用作剂量计算的输入。为了进行定性评估,两名经验丰富的放射剂量师在盲法比较中评估了100例自动和手动计划模拟。两名放射剂量师分别批准了自动/手动计划模拟的100%/100%和92%/91%。当将自动流程应用于另外50例病例时,类似的批准率分别为100%和94%。此外,定量比较结果显示,自动和手动计划模拟计算出的计划等中心/边界平均差异为 ,器官平均剂量(规定剂量:14.4 Gy)平均差异为 。对于大多数危险器官,在剂量重建准确性方面未发现统计学上的显著差异。最终,我们的自动流程结果质量足够高,能够轻松扩展剂量重建数据的生成。

相似文献

1
Automatic generation of three-dimensional dose reconstruction data for two-dimensional radiotherapy plans for historically treated patients.
J Med Imaging (Bellingham). 2020 Jan;7(1):015001. doi: 10.1117/1.JMI.7.1.015001. Epub 2020 Feb 3.
2
Surrogate-free machine learning-based organ dose reconstruction for pediatric abdominal radiotherapy.
Phys Med Biol. 2020 Dec 12;65(24):245021. doi: 10.1088/1361-6560/ab9fcc.
5
Individualized 3D reconstruction of normal tissue dose for patients with long-term follow-up: a step toward understanding dose risk for late toxicity.
Int J Radiat Oncol Biol Phys. 2012 Nov 15;84(4):e557-63. doi: 10.1016/j.ijrobp.2012.06.026. Epub 2012 Aug 25.
10
Toward fully automated multicriterial plan generation: a prospective clinical study.
Int J Radiat Oncol Biol Phys. 2013 Mar 1;85(3):866-72. doi: 10.1016/j.ijrobp.2012.04.015. Epub 2012 Jun 1.

本文引用的文献

7
Magnitude and variability of respiratory-induced diaphragm motion in children during image-guided radiotherapy.
Radiother Oncol. 2017 May;123(2):263-269. doi: 10.1016/j.radonc.2017.03.016. Epub 2017 Mar 28.
8
A review of uncertainties in radiotherapy dose reconstruction and their impacts on dose-response relationships.
J Radiol Prot. 2017 Mar 20;37(1):R1-R18. doi: 10.1088/1361-6498/aa575d. Epub 2017 Jan 24.
9
Radiation-Related New Primary Solid Cancers in the Childhood Cancer Survivor Study: Comparative Radiation Dose Response and Modification of Treatment Effects.
Int J Radiat Oncol Biol Phys. 2016 Mar 15;94(4):800-7. doi: 10.1016/j.ijrobp.2015.11.046. Epub 2015 Dec 15.
10
A Review of Radiotherapy-Induced Late Effects Research after Advanced Technology Treatments.
Front Oncol. 2016 Feb 10;6:13. doi: 10.3389/fonc.2016.00013. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验