Suppr超能文献

利用互信息熵方法提高 MM/PBSA 和 MM/GBSA 方法识别 Bcl-2 家族天然结构的性能。

Improving the performance of the MM/PBSA and MM/GBSA methods in recognizing the native structure of the Bcl-2 family using the interaction entropy method.

机构信息

School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.

出版信息

Phys Chem Chem Phys. 2020 Feb 19;22(7):4240-4251. doi: 10.1039/c9cp06459a.

Abstract

In the research and development of new drugs, theoretical and computational studies play an increasingly important role in discriminating native and decoy structures by their binding free energies. Predicting the binding free energy using the molecular mechanics/Poisson-Boltzmann (Generalized Born) surface area (MM/PB(GB)SA) methods to identify the native structure as the lowest-energy conformation is more theoretically rigorous than most scoring functions, but the main challenge of this method is the calculation of the entropic contribution. In this study, we add the entropic contribution to the MM/PBSA and two MM/GBSA (GBHCT and GBOBC1) models using the interaction entropy (IE) method. We then systemically evaluate the performance of these methods in recognizing the native structures by predicting the binding affinities of 176 protein-ligand and protein-protein systems of the Bcl-2 family. By calculating a series of statistical metrics, sensitivity, specificity, accuracy, Matthews correlation coefficient, the G-mean, and the receiver operating characteristic (ROC) curve, we find that the ability to discern the native structure from a decoy ensemble is improved significantly by the modification of the binding free energy using the IE method in both protein-ligand and protein-protein systems. Furthermore, the maximum area under the ROC curve (AUC) was 0.97, which was obtained by the GBHCT model combined with the IE method, indicating that this method has the best performance. The largest improvement occurs in the PB method, with a change in the AUC of 0.32. The modification of the energy is more obvious for protein-protein interactions than for protein-ligand interactions. This study indicates the effectiveness of the IE method in successfully recognizing the native structure, which is critical in rational drug design.

摘要

在新药研发中,理论和计算研究在通过结合自由能区分天然结构和诱饵结构方面发挥着越来越重要的作用。使用分子力学/泊松-玻尔兹曼(广义 Born)表面积(MM/PB(GB)SA)方法预测结合自由能,将天然结构识别为最低能量构象,比大多数评分函数更具理论严谨性,但该方法的主要挑战是计算熵贡献。在本研究中,我们使用相互作用熵(IE)方法将熵贡献添加到 MM/PBSA 和两种 MM/GBSA(GBHCT 和 GBOBC1)模型中。然后,我们通过预测 Bcl-2 家族 176 个蛋白-配体和蛋白-蛋白体系的结合亲和力,系统地评估了这些方法在识别天然结构方面的性能。通过计算一系列统计指标,如灵敏度、特异性、准确性、马修斯相关系数、G-均值和接收器操作特征(ROC)曲线,我们发现,通过 IE 方法对结合自由能的修饰,无论是在蛋白-配体还是蛋白-蛋白体系中,都显著提高了从诱饵集合中辨别天然结构的能力。此外,ROC 曲线下的最大面积(AUC)为 0.97,是通过结合 IE 方法的 GBHCT 模型获得的,这表明该方法具有最佳性能。最大的改进发生在 PB 方法中,AUC 的变化为 0.32。与蛋白-配体相互作用相比,能量修饰在蛋白-蛋白相互作用中更为明显。这项研究表明,IE 方法在成功识别天然结构方面是有效的,这在合理药物设计中至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验