University Rennes 1, Institute of Chemical Sciences, UMR 6226 CNRS, Campus Beaulieu, F-35042 Rennes, France.
Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
Nanoscale. 2020 Feb 20;12(7):4612-4621. doi: 10.1039/c9nr09987e.
Hybrid nanostructures are constructed by the direct coupling of fluorescent quantum dots and plasmonic gold nanoparticles. Self-assembly is directed by the strong affinity between two artificial α-repeat proteins that are introduced in the capping layers of the nanoparticles at a controlled surface density. The proteins have been engineered to exhibit a high mutual affinity, corresponding to a dissociation constant in the nanomolar range, towards the protein-functionalized quantum dots and gold nanoparticles. Protein-mediated self-assembly is evidenced by surface plasmon resonance and gel electrophoresis. The size and the structure of colloidal superstructures of complementary nanoparticles are analyzed by transmission electron microscopy and small angle X-ray scattering. The size of the superstructures is determined by the number of proteins per nanoparticle. The well-defined geometry of the rigid protein complex sets a highly uniform interparticle distance of 8 nm that affects the emission properties of the quantum dots in the hybrid ensembles. Our results open the route to the design of hybrid emitter-plasmon colloidal assemblies with controlled near-field coupling and better optical response.
杂化纳米结构是通过荧光量子点和等离子体金纳米粒子的直接耦合构建而成。自组装由两种人工α-重复蛋白之间的强亲和力指导,这两种蛋白在纳米粒子的帽层中以受控的表面密度引入。这些蛋白质经过工程设计,表现出对蛋白功能化量子点和金纳米粒子的高相互亲和力,对应于纳摩尔范围内的离解常数。通过表面等离子体共振和凝胶电泳证明了蛋白质介导的自组装。互补纳米粒子胶体超结构的大小和结构通过透射电子显微镜和小角 X 射线散射进行分析。超结构的大小由每个纳米粒子上的蛋白质数量决定。刚性蛋白质复合物的明确定义的几何形状设定了高度均匀的粒子间距离为 8nm,这影响了混合体中量子点的发射性质。我们的结果为设计具有受控近场耦合和更好光学响应的混合发射器-等离子体胶体组装体开辟了道路。