Manaud Jérémie, Maynadié Jérôme, Mesbah Adel, Hunault Myrtille O J Y, Martin Philippe M, Zunino Morgan, Meyer Daniel, Dacheux Nicolas, Clavier Nicolas
ICSM, Univ Montpellier, CEA, CNRS, ENSCM, 30207 Bagnols-sur-Cèze, France.
Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France.
Inorg Chem. 2020 Mar 2;59(5):3260-3273. doi: 10.1021/acs.inorgchem.9b03672. Epub 2020 Feb 11.
Within the development of future nuclear reactors, wet chemistry routes have been investigated for the fabrication of advanced oxide fuels. In this frame, a multiparametric study focused on the hydrothermal conversion of uranium(IV) oxalate U(CO)·HO into uranium oxides was undertaken in order to unravel the effects of temperature, pH, and kinetics. For pH ≤ 1, the lowest temperatures explored (typically from 180 to 200 °C) led to stabilized UO/UO mixtures exhibiting a global O/U ratio evaluated as 2.38 ± 0.10 from U M-edge HERFD-XANES experiments. Higher temperatures (220-250 °C) led the oxide stoichiometry to decrease down to 2.13 ± 0.04 which corresponds to a lower fraction of UO in the mixture. Additionally, increasing the temperature of the hydrothermal treatment efficiently improved the elimination of residual carbon species and water. Hydrothermal conversion of U(CO)·HO also led to a drastic modification of the powders morphology. With this aim, pH tuning could be used to shift from bipyramidal aggregates (up to pH 1) to microspheres (2 ≤ pH ≤ 5) and then to nanometric powders (pH > 5). Finally, a kinetics study showed that uranium oxides can be obtained from the hydrothermal decomposition of oxalate within only few hours. If the samples collected early during the treatment always presented the characteristic XRD lines of UO/UO fluorite-type structure, then they were found to be strongly oxidized (O/U = 2.65 ± 0.14) which suggested the existence of a U(VI)-bearing amorphous secondary phase. The latter further tended to reduce through time. Hydrothermal conversion then probably proceeds as a two-step mechanism composed by the oxidative decomposition of uranium(IV) oxalate followed by the reduction of uranium by organic moieties and its hydrolysis. It appears as an easy and efficient way to yield highly pure uranium oxide samples in solution.
在未来核反应堆的发展过程中,人们研究了湿法化学路线来制备先进的氧化物燃料。在此框架下,开展了一项多参数研究,重点关注草酸铀酰(U(CO)·HO)的水热转化为铀氧化物的过程,以揭示温度、pH值和动力学的影响。对于pH≤1的情况,所探索的最低温度(通常为180至200°C)导致UO/UO混合物稳定,通过U M边高能量分辨率荧光X射线吸收近边结构(HERFD-XANES)实验评估,其整体O/U比为2.38±0.10。较高温度(220 - 250°C)导致氧化物化学计量比降至2.13±0.04,这对应于混合物中UO的比例较低。此外,提高水热处理温度有效地促进了残余碳物种和水的去除。U(CO)·HO的水热转化还导致了粉末形态的剧烈变化。为此,调节pH值可用于从双锥体聚集体(pH值最高为1)转变为微球(2≤pH≤5),然后转变为纳米粉末(pH>5)。最后,动力学研究表明,仅需数小时即可通过草酸盐的水热分解获得铀氧化物。如果在处理早期收集的样品始终呈现UO/UO萤石型结构的特征X射线衍射谱线,那么发现它们被强烈氧化(O/U = 2.65±0.14),这表明存在含U(VI)的无定形第二相。后者会随着时间进一步还原。水热转化可能以两步机制进行,首先是草酸铀酰(IV)的氧化分解,然后是有机部分对铀的还原及其水解。这似乎是一种在溶液中制备高纯度铀氧化物样品的简便而有效的方法。