Key Laboratory of Wood Material Science and Utilization (Beijing Forestry University), Ministry of Education, Beijing, 100083, P.R. China.
Key Laboratory of Wood Material Science and Utilization (Beijing Forestry University), Ministry of Education, Beijing, 100083, P.R. China.
Waste Manag. 2020 Mar 15;105:102-109. doi: 10.1016/j.wasman.2020.01.041. Epub 2020 Feb 7.
Cork is light, porous, carbon-rich, and renewable, which leads to competitive advantages in the preparation of biochar, as compared to other biomass material. In this work, we propose to convert cork powder into cork-based biochar as Cu (II) adsorbent via slow pyrolysis, thereby providing a reliable and simple method for recycling cork industrial waste. The physicochemical properties of cork-based biochar prepared under different pyrolysis temperatures (450, 550, 650, and 750 °C) and pyrolysis time (0.5, 1.0, 1.5, and 2.0 h) were characterized by elemental analysis, FT-IR, XRD, N adsorption and SEM. The adsorption capacity of cork-based biochar on heavy metal ions was further evaluated by Cu ion adsorption testing. Results showed that the cork-based biochar produced under conditions of higher pyrolysis temperature and time, has higher aromaticity and lower polarity, larger specific surface area, and enhanced Cu ion adsorption capacity. The maximum specific surface area of cork-based biochar prepared at 750 °C for 0.5 h was 392.5 m/g, which surpasses most other biochars reported in previous studies, which are beneficial to the application of wastewater management. The SEM image demonstrated that the biochar retains the special hollow polyhedral cell structure of raw material cork. Furthermore, a large number of pores formed on the cell wall after high temperature pyrolysis, and the cells are connected with each other through these open pores. Finally, cork-based biochar exhibits superior Cu ion adsorption capacity (18.5 mg/g) with a shorter equilibrium time (4 h), which gives it a competitive advantage to similar adsorbents.
软木是一种轻质、多孔、富含碳且可再生的材料,这使其在生物炭制备方面具有竞争优势,优于其他生物质材料。在这项工作中,我们提出通过慢速热解将软木粉转化为基于软木的生物炭作为 Cu(II)吸附剂,从而为软木工业废料的回收提供了一种可靠且简单的方法。通过元素分析、FT-IR、XRD、N 吸附和 SEM 对不同热解温度(450、550、650 和 750°C)和热解时间(0.5、1.0、1.5 和 2.0 h)下制备的基于软木的生物炭的物理化学性质进行了表征。进一步通过 Cu 离子吸附测试评估了基于软木的生物炭对重金属离子的吸附能力。结果表明,在较高的热解温度和时间条件下制备的基于软木的生物炭具有更高的芳构度和更低的极性、更大的比表面积和增强的 Cu 离子吸附能力。在 750°C 下热解 0.5 h 制备的基于软木的生物炭的最大比表面积为 392.5 m2/g,超过了之前研究中报道的大多数其他生物炭,有利于废水管理的应用。SEM 图像表明,生物炭保留了原材料软木的特殊空心多面体细胞结构。此外,高温热解后细胞壁上形成了大量的孔,细胞通过这些开放的孔相互连接。最后,基于软木的生物炭表现出优异的 Cu 离子吸附能力(18.5 mg/g)和较短的平衡时间(4 h),与类似的吸附剂相比具有竞争优势。