Suppr超能文献

基于人工智能的微钻中多传感器孔质量预测。

Artificial Intelligence-Based Hole Quality Prediction in Micro-Drilling Using Multiple Sensors.

机构信息

Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna-801103, India.

Department of Manufacturing Science and Engineering, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.

出版信息

Sensors (Basel). 2020 Feb 7;20(3):885. doi: 10.3390/s20030885.

Abstract

The prevalence of micro-holes is widespread in mechanical, electronic, optical, ornaments, micro-fluidic devices, etc. However, monitoring and detection tool wear and tool breakage are imperative to achieve improved hole quality and high productivity in micro-drilling. The various multi-sensor signals are used to monitor the condition of the tool. In this work, the vibration signals and cutting force signals have been applied individually as well as in combination to determine their effectiveness for tool-condition monitoring applications. Moreover, they have been used to determine the best strategies for tool-condition monitoring by prediction of hole quality during micro-drilling operations with 0.4 mm micro-drills. Furthermore, this work also developed an adaptive neuro fuzzy inference system (ANFIS) model using different time domains and wavelet packet features of these sensor signals for the prediction of the hole quality. The best prediction of hole quality was obtained by a combination of different sensor features in wavelet domain of vibration signal. The model's predicted results were found to exert a good agreement with the experimental results.

摘要

微孔的存在在机械、电子、光学、饰品、微流道装置等领域非常普遍。然而,为了实现微钻孔中孔质量的提高和高生产效率,监测和检测刀具磨损和刀具破损是必不可少的。各种多传感器信号被用于监测刀具的状态。在这项工作中,振动信号和切削力信号分别单独使用,也结合使用,以确定它们在刀具状态监测应用中的有效性。此外,它们还被用于通过使用 0.4mm 微钻头在微钻孔操作过程中预测孔质量,来确定最佳的刀具状态监测策略。此外,这项工作还使用这些传感器信号的不同时域和小波包特征开发了一个自适应神经模糊推理系统(ANFIS)模型,用于预测孔质量。通过振动信号小波域中不同传感器特征的组合,获得了最佳的孔质量预测。模型的预测结果与实验结果吻合较好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7314/7039300/1dcee803a37d/sensors-20-00885-g001.jpg

相似文献

2
Experimental Research of High-Quality Drilling Based on Ultrasonic Vibration-Assisted Machining.
Micromachines (Basel). 2023 Aug 10;14(8):1579. doi: 10.3390/mi14081579.
3
A transductive neuro-fuzzy controller: application to a drilling process.
IEEE Trans Neural Netw. 2010 Jul;21(7):1158-67. doi: 10.1109/TNN.2010.2050602.
4
Machine Learning Solution for Predicting Vibrations while Drilling the Curve Section.
ACS Omega. 2023 Sep 18;8(39):35822-35836. doi: 10.1021/acsomega.3c03413. eCollection 2023 Oct 3.
5
A review on the balancing design of micro drills.
Int J Adv Manuf Technol. 2023;126(11-12):4849-4871. doi: 10.1007/s00170-023-11496-w. Epub 2023 May 8.
8
9
Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients.
J Neurosci Methods. 2005 Oct 30;148(2):113-21. doi: 10.1016/j.jneumeth.2005.04.013. Epub 2005 Jul 28.
10
Detecting downhole vibrations through drilling horizontal sections: machine learning study.
Sci Rep. 2023 Apr 17;13(1):6204. doi: 10.1038/s41598-023-33411-9.

引用本文的文献

3
Micro-drilling on shape memory alloys-A review.
MethodsX. 2024 Sep 24;13:102968. doi: 10.1016/j.mex.2024.102968. eCollection 2024 Dec.
5
Tool-Condition Diagnosis Model with Shock-Sharpening Algorithm for Drilling Process.
Sensors (Basel). 2022 Mar 3;22(5):1975. doi: 10.3390/s22051975.
7
Thermographic Fault Diagnosis of Ventilation in BLDC Motors.
Sensors (Basel). 2021 Oct 30;21(21):7245. doi: 10.3390/s21217245.
8
Elimination of Hole Mouth Burr in Multilayer PCB Micro-Hole by Using Micro-EDM.
Micromachines (Basel). 2021 Jun 12;12(6):688. doi: 10.3390/mi12060688.
10
Ventilation Diagnosis of Angle Grinder Using Thermal Imaging.
Sensors (Basel). 2021 Apr 18;21(8):2853. doi: 10.3390/s21082853.

本文引用的文献

1
Multi-Sensor Data Fusion for Real-Time Surface Quality Control in Automated Machining Systems.
Sensors (Basel). 2018 Dec 11;18(12):4381. doi: 10.3390/s18124381.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验