Department of Physics, University of Massachusetts, Amherst, MA 01003.
Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY 13244.
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):3938-3943. doi: 10.1073/pnas.1916221117. Epub 2020 Feb 11.
Thin solids often develop elastic instabilities and subsequently complex, multiscale deformation patterns. Revealing the organizing principles of this spatial complexity has ramifications for our understanding of morphogenetic processes in plant leaves and animal epithelia and perhaps even the formation of human fingerprints. We elucidate a primary source of this morphological complexity-an incompatibility between an elastically favored "microstructure" of uniformly spaced wrinkles and a "macrostructure" imparted through the wrinkle director and dictated by confinement forces. Our theory is borne out of experiments and simulations of floating sheets subjected to radial stretching. By analyzing patterns of grossly radial wrinkles we find two sharply distinct morphologies: defect-free patterns with a fixed number of wrinkles and nonuniform spacing and patterns of uniformly spaced wrinkles separated by defect-rich buffer zones. We show how these morphological types reflect distinct minima of a Ginzburg-Landau functional-a coarse-grained version of the elastic energy, which penalizes nonuniform wrinkle spacing and amplitude, as well as deviations of the actual director from the axis imposed by confinement. Our results extend the effective description of wrinkle patterns as liquid crystals [H. Aharoni , 8, 15809 (2017)], and we highlight a fascinating analogy between the geometry-energy interplay that underlies the proliferation of defects in the mechanical equilibrium of confined sheets and in thermodynamic phases of superconductors and chiral liquid crystals.
薄固体通常会出现弹性不稳定性,随后会出现复杂的、多尺度的变形模式。揭示这种空间复杂性的组织原则,对于我们理解植物叶片和动物上皮组织的形态发生过程,甚至对于人类指纹的形成,都具有重要意义。我们阐明了这种形态复杂性的一个主要来源——弹性上有利的“微结构”(均匀间隔的皱纹)与通过皱纹导向器赋予的“宏观结构”之间的不兼容性,而宏观结构由约束力决定。我们的理论是通过对受径向拉伸的漂浮薄片进行实验和模拟得出的。通过分析大体上呈径向的皱纹图案,我们发现了两种截然不同的形态:一种是无缺陷的图案,具有固定数量的皱纹和不均匀的间隔,另一种是均匀间隔的皱纹图案,中间隔着富含缺陷的缓冲区。我们展示了这些形态类型如何反映出一个吉布斯-朗道泛函的两个明显的最小值——一种弹性能量的粗粒化版本,它惩罚不均匀的皱纹间距和幅度,以及实际导向器偏离由约束所施加的轴的偏差。我们的结果扩展了皱纹图案的有效描述,将其作为液晶[H. Aharoni,8,15809(2017)],并强调了受约束薄片的力学平衡中缺陷增殖的几何-能量相互作用,以及超导体和手性液晶的热力学相之间的迷人类比。