Suppr超能文献

全无机量子点辅助增强电荷在体相有机卤化物钙钛矿界面间的提取,用于高效稳定且无针孔的钙钛矿太阳能电池。

All-inorganic quantum dot assisted enhanced charge extraction across the interfaces of bulk organo-halide perovskites for efficient and stable pin-hole free perovskite solar cells.

作者信息

Ghosh Dibyendu, Chaudhary Dhirendra K, Ali Md Yusuf, Chauhan Kamlesh Kumar, Prodhan Sayan, Bhattacharya Sayantan, Ghosh Barun, Datta P K, Ray Sekhar C, Bhattacharyya Sayan

机构信息

Department of Chemical Sciences , Centre for Advanced Functional Materials , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur 741246 , India . Email:

Department of Electrical Engineering , Indian Institute of Technology (IIT) Kharagpur , Kharagpur - 721302 , India.

出版信息

Chem Sci. 2019 Aug 23;10(41):9530-9541. doi: 10.1039/c9sc01183h. eCollection 2019 Nov 7.

Abstract

In spite of achieving high power conversion efficiency (PCE), organo-halide perovskites suffer from long term stability issues. Especially the grain boundaries of polycrystalline perovskite films are considered as giant trapping sites for photo-generated carriers and therefore play an important role in charge transportation dynamics. Surface engineering grain boundary modification is the most promising way to resolve this issue. A unique antisolvent-cum-quantum dot (QD) assisted grain boundary modification approach has been employed for creating monolithically grained, pin-hole free perovskite films, wherein the choice of all-inorganic CsPbBr I ( = 1-2) QDs is significant. The grain boundary filling by QDs facilitates the formation of compact films with 1-2 μm perovskite grains as compared to 300-500 nm grains in the unmodified films. The solar cells fabricated by CsPbBrI QD modification yield a PCE of ∼16.5% as compared to ∼13% for the unmodified devices. X-ray photoelectron spectral analyses reveal that the sharing of electrons between the PbI framework in the bulk perovskite and Br ions in CsPbBrI QDs facilitates the charge transfer process while femtosecond transient absorption spectroscopy (fs-TAS) suggests quicker trap filling and enhanced charge carrier recombination lifetime. Considerable ambient stability up to ∼720 h with <20% PCE degradation firmly establishes the strategic QD modification of bulk perovskite films.

摘要

尽管有机卤化物钙钛矿实现了高功率转换效率(PCE),但仍存在长期稳定性问题。特别是多晶钙钛矿薄膜的晶界被认为是光生载流子的巨大俘获位点,因此在电荷传输动力学中起着重要作用。表面工程晶界修饰是解决这一问题最有前景的方法。一种独特的反溶剂兼量子点(QD)辅助晶界修饰方法已被用于制备整体晶粒化、无针孔的钙钛矿薄膜,其中全无机CsPbBrₓI₃₋ₓ(x = 1 - 2)量子点的选择至关重要。与未修饰薄膜中300 - 500 nm的晶粒相比,量子点对晶界的填充促进了形成具有1 - 2μm钙钛矿晶粒的致密薄膜。通过CsPbBrI量子点修饰制备的太阳能电池的功率转换效率约为16.5%,而未修饰器件的功率转换效率约为13%。X射线光电子能谱分析表明,体相钙钛矿中的PbI₆骨架与CsPbBrI量子点中的Br离子之间的电子共享促进了电荷转移过程,而飞秒瞬态吸收光谱(fs - TAS)表明陷阱填充更快且电荷载流子复合寿命增强。在高达约720小时的环境稳定性下,功率转换效率降解小于20%,这牢固地确立了对体相钙钛矿薄膜进行战略性量子点修饰的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97ea/6979373/e093fb734780/c9sc01183h-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验