Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore.
Pharmacol Res. 2020 May;155:104687. doi: 10.1016/j.phrs.2020.104687. Epub 2020 Feb 11.
Heart failure (HF) affects over 26 million people world-wide. It is a syndrome triggered by loss of normal cardiac function due to many acute (eg myocardial infarction) and/or chronic (eg hypertension) causes and characterized by mixed beneficial and deleterious activation of a complex of multifaceted neurohormonal systems the net effect of which frequently is further adverse disruption of pressure-volume homeostasis. Unlike the situation in chronic heart failure, current strategies for treatment of acute heart failure are empirical and lack a strong evidence base. Management includes any of a combination of vasodilators, diuretics and ionotropic agents depending on the hemodynamic profile of the patient. Despite the improvement in the options available to improve outcomes in patients with chronic HF, for several decades little gain has been made in the treatment of the acute decompensated state. Morbidity and mortality rates remain high necessitating new therapeutic agents. The cardiac natriuretic peptides (NPs) are key hormones in pressure-volume homoeostasis. There are three isoforms of mammalian NPs, namely ANP, BNP and CNP. These peptides bind to membrane-bound NP receptors (NPRs) on the heart, vasculature and kidney to lower blood pressure and circulating volume. Intravenous infusion of NPs in HF patients improves hemodynamic status but is associated with occasional severe hypotension. Apart from mammalian NPs, snake venom NPs are an excellent source of pharmacologically distinct ligands that offer the possibility of engineering NPs for therapeutic purposes. Venom NPs have long half-lives, differential NPR activation profiles and varied NPR specificity. The scaffolds of venom NPs encode the molecular information for designing NPs with longer half-lives and improved and differential vascular and renal functions. This review focuses on the structure-function paradigm of mammalian and venom NPs and the different peptide engineering strategies that have been utilized in the design of clinically relevant new NP-analogues.
心力衰竭(HF)影响全球超过 2600 万人。它是一种由多种急性(如心肌梗死)和/或慢性(如高血压)原因导致的正常心脏功能丧失引发的综合征,其特征是多种神经激素系统的有益和有害激活的混合,这些系统的综合作用经常进一步破坏压力-容积平衡。与慢性心力衰竭的情况不同,急性心力衰竭的治疗策略目前是经验性的,缺乏强有力的证据基础。治疗包括根据患者的血液动力学特征,将血管扩张剂、利尿剂和离子型药物中的任何一种组合使用。尽管改善慢性心力衰竭患者预后的选择有所增加,但在治疗急性失代偿状态方面,几十年来几乎没有取得进展。发病率和死亡率仍然很高,需要新的治疗药物。心脏利钠肽(NPs)是压力-容积平衡的关键激素。哺乳动物有三种 NPs 同工型,即 ANP、BNP 和 CNP。这些肽与心脏、血管和肾脏上的膜结合型 NP 受体(NPRs)结合,以降低血压和循环血量。HF 患者静脉内输注 NPs 可改善血液动力学状态,但与偶尔发生的严重低血压有关。除了哺乳动物的 NPs,蛇毒 NPs 是具有药理差异配体的极好来源,为治疗目的的 NPs 工程提供了可能性。毒液 NPs 具有较长的半衰期、不同的 NPR 激活谱和不同的 NPR 特异性。毒液 NPs 的支架编码了设计具有更长半衰期和改善的和不同的血管和肾功能的 NPs 的分子信息。这篇综述重点介绍了哺乳动物和毒液 NPs 的结构-功能范式,以及在设计具有临床相关性的新 NP 类似物时所采用的不同肽工程策略。