Suppr超能文献

卡尔加里学龄前儿童磁共振成像(MRI)数据集。

Calgary Preschool magnetic resonance imaging (MRI) dataset.

作者信息

Reynolds Jess E, Long Xiangyu, Paniukov Dmitrii, Bagshawe Mercedes, Lebel Catherine

机构信息

Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4, AB, Canada.

Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Canada.

出版信息

Data Brief. 2020 Jan 31;29:105224. doi: 10.1016/j.dib.2020.105224. eCollection 2020 Apr.

Abstract

The Calgary Preschool MRI Dataset in the Developmental Neuroimaging Lab at the University of Calgary uses magnetic resonance imaging (MRI) techniques to study brain structure and function in early childhood [1-3]. The dataset aims to characterise brain development in early childhood (2-8 years), and to understand links to cognitive and behavioral development, as well as provide a baseline from which to identify atypical development in children with diseases, disorders, or brain injuries. MRI data are provided for 126 children (61 males, 65 females). Children ranged from 1.95 to 6.22 years (mean = 3.98 ± 1.06 years) at the time of their first scan and were initially scanned at six month intervals, and now continue to be followed annually (1-20 scans per child, 431 total datasets; datasets do not always have all scan modalities available). All MRI scans were acquired on the same General Electric 3T MR750w system and 32-channel head coil (GE, Waukesha, WI) at the Alberta Children's Hospital in Calgary, Canada. The MRI protocols provided in this dataset include: T1-weighted images acquired using a FSPGR BRAVO sequence; arterial spin labeling (ASL) images acquired with the vendor supplied pseudo continuous 3D ASL sequence; diffusion tensor imaging data acquired using single shot spin echo echo-planar imaging; and passive viewing resting state functional MRI data acquired with a gradient-echo echo-planar imaging sequence.

摘要

卡尔加里大学发育神经影像实验室的卡尔加里学龄前儿童MRI数据集使用磁共振成像(MRI)技术来研究幼儿期的脑结构和功能[1-3]。该数据集旨在描述幼儿期(2至8岁)的脑发育情况,理解其与认知和行为发育的关联,并提供一个基线,以便识别患有疾病、病症或脑损伤儿童的非典型发育情况。提供了126名儿童(61名男性,65名女性)的MRI数据。儿童首次扫描时年龄在1.95至6.22岁之间(平均 = 3.98 ± 1.06岁),最初每隔六个月扫描一次,现在继续每年进行随访(每个儿童进行1至20次扫描,总共431个数据集;并非所有数据集都具备所有扫描模式)。所有MRI扫描均在加拿大卡尔加里市艾伯塔儿童医院的同一台通用电气3T MR750w系统和32通道头部线圈(通用电气,沃基肖,威斯康星州)上进行。该数据集中提供的MRI协议包括:使用FSPGR BRAVO序列采集的T1加权图像;使用供应商提供的伪连续3D动脉自旋标记(ASL)序列采集的ASL图像;使用单次激发自旋回波平面成像采集的扩散张量成像数据;以及使用梯度回波平面成像序列采集的被动观看静息态功能MRI数据。

相似文献

1
Calgary Preschool magnetic resonance imaging (MRI) dataset.
Data Brief. 2020 Jan 31;29:105224. doi: 10.1016/j.dib.2020.105224. eCollection 2020 Apr.
4
Dual-contrast pCASL using simultaneous gradient-echo/spin-echo multiband EPI.
Magn Reson Imaging. 2019 Apr;57:359-367. doi: 10.1016/j.mri.2018.11.018. Epub 2018 Nov 27.
5
Simultaneous acquisition of perfusion image and dynamic MR angiography using time-encoded pseudo-continuous ASL.
Magn Reson Med. 2018 May;79(5):2676-2684. doi: 10.1002/mrm.26926. Epub 2017 Sep 14.
9
Brain magnetic resonance imaging CO2 stress testing in adolescent postconcussion syndrome.
J Neurosurg. 2016 Sep;125(3):648-60. doi: 10.3171/2015.6.JNS15972. Epub 2015 Dec 18.

引用本文的文献

2
Personalized MRI-based characterization of subcortical anomalies in Ataxia-Telangiectasia using deep-learning.
PLoS One. 2025 Aug 29;20(8):e0328828. doi: 10.1371/journal.pone.0328828. eCollection 2025.
3
Few sex differences in regional gray matter volume growth trajectories across early childhood.
Imaging Neurosci (Camb). 2024 May 20;2. doi: 10.1162/imag_a_00154. eCollection 2024.
4
Diffusion deep learning for brain age prediction and longitudinal tracking in children through adulthood.
Imaging Neurosci (Camb). 2024 Mar 25;2. doi: 10.1162/imag_a_00114. eCollection 2024.
5
Charting structural brain asymmetry across the human lifespan.
bioRxiv. 2025 Jul 24:2025.07.21.665924. doi: 10.1101/2025.07.21.665924.
6
Longitudinal trajectories of brain development from infancy to school age and their relationship with literacy development.
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2414598122. doi: 10.1073/pnas.2414598122. Epub 2025 Jun 10.
7
Differential tractography: an imaging marker for tissue degeneration in neurodegenerative diseases.
Brain Commun. 2025 May 24;7(3):fcaf198. doi: 10.1093/braincomms/fcaf198. eCollection 2025.
9
Brain Age Prediction in Type II GM1 Gangliosidosis.
medRxiv. 2025 Apr 25:2025.04.23.25326206. doi: 10.1101/2025.04.23.25326206.
10
An approach to building foundation models for brain image analysis.
Med Image Comput Comput Assist Interv. 2024 Oct;15012:421-431. doi: 10.1007/978-3-031-72390-2_40. Epub 2024 Oct 23.

本文引用的文献

1
2
Cerebral blood flow increases across early childhood.
Neuroimage. 2020 Jan 1;204:116224. doi: 10.1016/j.neuroimage.2019.116224. Epub 2019 Sep 24.
3
Structural and functional asymmetry of the language network emerge in early childhood.
Dev Cogn Neurosci. 2019 Oct;39:100682. doi: 10.1016/j.dcn.2019.100682. Epub 2019 Jul 21.
4
Global and regional white matter development in early childhood.
Neuroimage. 2019 Aug 1;196:49-58. doi: 10.1016/j.neuroimage.2019.04.004. Epub 2019 Apr 5.
5
Corpus callosum microstructure is associated with motor function in preschool children.
Neuroimage. 2018 Dec;183:828-835. doi: 10.1016/j.neuroimage.2018.09.004. Epub 2018 Sep 4.
6
Young children in different linguistic environments: A multimodal neuroimaging study of the inferior frontal gyrus.
Brain Cogn. 2019 Aug;134:71-79. doi: 10.1016/j.bandc.2018.05.009. Epub 2018 Jul 12.
7
Factors Associated With Successful MRI Scanning in Unsedated Young Children.
Front Pediatr. 2018 May 22;6:146. doi: 10.3389/fped.2018.00146. eCollection 2018.
8
Brain white matter structure and language ability in preschool-aged children.
Brain Lang. 2018 Jan;176:19-25. doi: 10.1016/j.bandl.2017.10.008. Epub 2017 Nov 10.
9
Age-related functional brain changes in young children.
Neuroimage. 2017 Jul 15;155:322-330. doi: 10.1016/j.neuroimage.2017.04.059. Epub 2017 Apr 28.
10
Prepartum and Postpartum Maternal Depressive Symptoms Are Related to Children's Brain Structure in Preschool.
Biol Psychiatry. 2016 Dec 1;80(11):859-868. doi: 10.1016/j.biopsych.2015.12.004. Epub 2015 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验