Suppr超能文献

寡脱氧核糖核苷酸中31P NMR共振的归属:脱氧核糖磷酸主链构象的序列特异性变化起源以及双链核酸的31P化学位移

Assignments of 31P NMR resonances in oligodeoxyribonucleotides: origin of sequence-specific variations in the deoxyribose phosphate backbone conformation and the 31P chemical shifts of double-helical nucleic acids.

作者信息

Gorenstein D G, Schroeder S A, Fu J M, Metz J T, Roongta V, Jones C R

机构信息

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907.

出版信息

Biochemistry. 1988 Sep 20;27(19):7223-37. doi: 10.1021/bi00419a009.

Abstract

It is now possible to unambiguously assign all 31P resonances in the 31P NMR spectra of oligonucleotides by either two-dimensional NMR techniques or site-specific 17O labeling of the phosphoryl groups. Assignment of 31P signals in tetradecamer duplexes, (dTGTGAGCGCTCACA)2, (dTAT-GAGCGCTCATA)2, (dTCTGAGCGCTCAGA)2, and (dTGTGTGCGCACACA)2, and the dodecamer duplex d(CGTGAATTCGCG)2 containing one base-pair mismatch, combined with additional assignments in the literature, has allowed an analysis of the origin of the sequence-specific variation in 31P chemical shifts of DNA. The 31P chemical shifts of duplex B-DNA phosphates correlate reasonably well with some aspects of the Dickerson/Calladine sum function for variation in the helical twist of the oligonucleotides. Correlations between experimentally measured P-O and C-O torsional angles and results from molecular mechanics energy minimization calculations show that these results are consistent with the hypothesis that sequence-specific variations in 31P chemical shifts are attributable to sequence-specific changes in the deoxyribose phosphate backbone. The major structural variation responsible for these 31P shift perturbations appears to be P-O and C-O backbone torsional angles which respond to changes in the local helical structure. Furthermore, 31P chemical shifts and JH3'-P coupling constants both indicate that these backbone torsional angle variations are more permissive at the ends of the double helix than in the middle. Thus 31P NMR spectroscopy and molecular mechanics energy minimization calculations appear to be able to support sequence-specific structural variations along the backbone of the DNA in solution.

摘要

现在可以通过二维核磁共振技术或磷酰基的位点特异性(^{17}O)标记,明确地确定寡核苷酸(^{31}P)核磁共振谱中的所有(^{31}P)共振峰。对十四聚体双链体((dTGTGAGCGCTCACA)_2)、((dTAT - GAGCGCTCATA)_2)、((dTCTGAGCGCTCAGA)_2)和((dTGTGTGCGCACACA)_2)以及含有一个碱基对错配的十二聚体双链体(d(CGTGAATTCGCG)2)中的(^{31}P)信号进行归属,并结合文献中的其他归属,使得对DNA中(^{31}P)化学位移的序列特异性变化的起源进行分析成为可能。双链B - DNA磷酸酯的(^{31}P)化学位移与Dickerson/Calladine和函数中寡核苷酸螺旋扭曲变化的某些方面具有合理的良好相关性。实验测量的(P - O)和(C - O)扭转角与分子力学能量最小化计算结果之间的相关性表明,这些结果与以下假设一致:(^{31}P)化学位移的序列特异性变化归因于脱氧核糖磷酸主链的序列特异性变化。导致这些(^{31}P)位移扰动的主要结构变化似乎是(P - O)和(C - O)主链扭转角,它们对局部螺旋结构的变化做出响应。此外,(^{31}P)化学位移和(J{H3'-P})耦合常数都表明,这些主链扭转角变化在双螺旋末端比在中间更宽松。因此,(^{31}P)核磁共振光谱和分子力学能量最小化计算似乎能够支持溶液中DNA主链上的序列特异性结构变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验