Gupta G, Sarma M H, Sarma R H
Institute of Biomolecular Stereodynamics, State University, Albany, New York 12222.
Biochemistry. 1988 Oct 4;27(20):7909-19. doi: 10.1021/bi00420a049.
It is very well documented that the presence of an An.Tn tract causes intrinsic DNA bending. Hagerman demonstrated that the sequence in which the An.Tn tracts are joined plays a very crucial role in determining DNA bending. For example, Hagerman showed that the polymer with a repeat of d(GA4T4C)n greater than or equal to 10 is bent but the polymer with a repeat of d(GT4A4C)n greater than or equal to 10 is not bent [Hagerman, P. J. (1986) Nature (London) 326, 720-722]. Earlier we have shown that the decamer repeat d(GA4T4C)2 is itself bent with a finite structural discontinuity at the A----T sequence [Sarma, M. H., Gupta, G., & Sarma, R. H. (1988) Biochemistry 27, 3423-3432]. In the present article, we summarize our studies on the decamer repeat d(GT4A4C)2 structure in solution. By employment of 1D and 2D 1H NMR studies at 500 MHz a complete sequential assignment has been made for the exchangeable and nonexchangeable protons belonging to the ten nucleotides. NOESY data were collected for d(GT4A4C)2 at 17 degrees C in D2O for three mixing times, 150, 100, and 50 ms. A quantitative NOESY simulation technique was employed to arrive at a structural model of d(GT4A4C)2 in solution. Our detailed analyses revealed the following structural features: (i) The duplex adopts the gross morphology of a B-DNA. (ii) All the A.T pairs are propeller twisted (less than or equal to -15 degrees). (iii) Although both A and T nucleotides belong to the C2'-endo,anticonformational domain, there is a mild variation in the actual conformation of the A and T residues. (iv) Even though there is a subtle conformational difference in the A and T nucleotides, two structural frames of T4.A4 segments are joined at the T----A sequence in such a way that there is no finite discontinuity at the junction; i.e., two neighboring frames exactly coincide at the T----A junction. Thus, our studies on d(GA4T4C)2 (Sarma et al., 1988) and on d(GT4A4C)2 (this article) reveal the structural peculiarity of the An.Tn tract and the effect of A----T/T----A sequence in causing DNA bending.
有充分的文献记载表明,An.Tn序列的存在会导致DNA发生内在弯曲。哈格曼证明,An.Tn序列连接的顺序在决定DNA弯曲方面起着至关重要的作用。例如,哈格曼表明,重复序列为d(GA4T4C)n且n大于或等于10的聚合物会发生弯曲,但重复序列为d(GT4A4C)n且n大于或等于10的聚合物则不会弯曲[哈格曼,P. J.(1986年)《自然》(伦敦)326卷,720 - 722页]。此前我们已经表明,十聚体重复序列d(GA4T4C)2本身会发生弯曲,并且在A----T序列处存在有限的结构不连续性[萨尔马,M. H.,古普塔,G.,& 萨尔马,R. H.(1988年)《生物化学》27卷,3423 - 3432页]。在本文中,我们总结了对溶液中十聚体重复序列d(GT4A4C)2结构的研究。通过在500 MHz下进行一维和二维1H NMR研究,已对属于十个核苷酸的可交换和不可交换质子进行了完整的序列归属。在17℃下于D2O中对d(GT4A4C)2在三种混合时间(150、100和50 ms)下收集了NOESY数据。采用定量NOESY模拟技术得出了溶液中d(GT4A4C)2的结构模型。我们的详细分析揭示了以下结构特征:(i)双链体呈现出B - DNA的总体形态。(ii)所有A.T碱基对都呈螺旋桨状扭曲(小于或等于 - 15度)。(iii)尽管A和T核苷酸都属于C2'-内型、反式构象域,但A和T残基的实际构象存在轻微差异。(iv)尽管A和T核苷酸存在细微的构象差异,但T4.A4片段的两个结构框架在T----A序列处连接,使得连接处不存在有限的不连续性;即两个相邻框架在T----A连接处完全重合。因此,我们对d(GA4T4C)2(萨尔马等人,1988年)和d(GT4A4C)2(本文)的研究揭示了An.Tn序列的结构特殊性以及A----T/T----A序列在导致DNA弯曲方面的作用。