Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Environmental Science and Engineering Research Center, Harbin Institute of Technology, Shenzhen, 518055, PR China; International Joint Research Center for Persistent Toxic Substances, Harbin Institute of Technology, Shenzhen, 518055, PR China.
Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Environmental Science and Engineering Research Center, Harbin Institute of Technology, Shenzhen, 518055, PR China; Tonson Tech Automation Equipment CO., LTD., Shenzhen, 518055, PR China.
Chemosphere. 2020 Jun;249:126135. doi: 10.1016/j.chemosphere.2020.126135. Epub 2020 Feb 6.
In this study, a simple sol-gel method was applied for preparing effectual photocatalyst of S-Bi co-doped F-TiO/SiO (S-Bi-F-TiO/SiO) nanopowder. Optimal preparation conditions were obtained by optimizing the calcination temperature and the ratio of S and Bi. The synthesized powder was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), brunauer-emmett-teller (BET), UV-Visible diffuse-reflectance spectroscopy (UV-Vis DRS), photoluminescence spectroscopy (PL) and ammonia adsorption and temperature-programmed desorption (NH-TPD). The photocatalytic activity was evaluated by the degradation of acrylonitrile under simulated visible light irradiation. S-Bi-F-TiO/SiO nanopowder possess excellent photocatalytic properties under visible light for the degradation of acrylonitrile, when the calcination temperature was 450 °C for 2 h and the ratio of S and Bi was 0.02: 0.007. The degradation efficiency of acrylonitrile reached to 81.9% within 6 min of visible light irradiation. Compared with F-TiO/SiO sample, NH-TPD and PL results revealed the higher photocatalytic activity for S-Bi-F-TiO/SiO, which is mainly due to the increase strength and number of surface acid site with S doping. The co-doping with S & Bi improved the separation of electron-hole pairs and enhanced the photocatalytic oxidizing species. The UV-Vis DRS showed stronger absorption in S-Bi co-doped F-TiO/SiO catalyst as compared to F-TiO/SiO catalyst. XPS results demonstrated the presence of various surface species viz. oxygen vacancies, Ti, Ti, O and OH group.
在这项研究中,采用简单的溶胶-凝胶法制备了有效的 S-Bi 共掺杂 F-TiO2/SiO2(S-Bi-F-TiO2/SiO2)纳米粉末光催化剂。通过优化煅烧温度和 S、Bi 的比例,获得了最佳的制备条件。通过 X 射线衍射(XRD)、透射电子显微镜(TEM)、能谱仪(EDS)、X 射线光电子能谱(XPS)、BET 比表面积测定仪、紫外-可见漫反射光谱(UV-Vis DRS)、光致发光光谱(PL)和氨吸附及程序升温脱附(NH-TPD)对合成的粉末进行了表征。采用模拟可见光照射下丙烯腈的降解来评价光催化活性。当煅烧温度为 450°C 且 S 和 Bi 的比例为 0.02:0.007 时,S-Bi-F-TiO2/SiO2 纳米粉末在可见光下具有优异的光催化活性,可使丙烯腈在 6 分钟内降解 81.9%。与 F-TiO2/SiO2 样品相比,NH-TPD 和 PL 结果表明,S-Bi-F-TiO2/SiO2 的光催化活性更高,这主要是由于 S 掺杂增加了表面酸位的强度和数量。S 和 Bi 的共掺杂提高了电子-空穴对的分离效率,并增强了光催化氧化物种。与 F-TiO2/SiO2 催化剂相比,UV-Vis DRS 显示 S-Bi 共掺杂 F-TiO2/SiO2 催化剂具有更强的可见光吸收能力。XPS 结果表明存在各种表面物种,如氧空位、Ti、Ti3+、O 和 OH 基团。