Suppr超能文献

物理可解释的生物网络动力学分类,用于复杂的集体运动。

Physically-interpretable classification of biological network dynamics for complex collective motions.

机构信息

Graduate School of Informatics, Nagoya University, Nagoya, Japan.

RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.

出版信息

Sci Rep. 2020 Feb 20;10(1):3005. doi: 10.1038/s41598-020-58064-w.

Abstract

Understanding biological network dynamics is a fundamental issue in various scientific and engineering fields. Network theory is capable of revealing the relationship between elements and their propagation; however, for complex collective motions, the network properties often transiently and complexly change. A fundamental question addressed here pertains to the classification of collective motion network based on physically-interpretable dynamical properties. Here we apply a data-driven spectral analysis called graph dynamic mode decomposition, which obtains the dynamical properties for collective motion classification. Using a ballgame as an example, we classified the strategic collective motions in different global behaviours and discovered that, in addition to the physical properties, the contextual node information was critical for classification. Furthermore, we discovered the label-specific stronger spectra in the relationship among the nearest agents, providing physical and semantic interpretations. Our approach contributes to the understanding of principles of biological complex network dynamics from the perspective of nonlinear dynamical systems.

摘要

理解生物网络动态是各个科学和工程领域的一个基本问题。网络理论能够揭示元素之间的关系及其传播;然而,对于复杂的集体运动,网络性质通常会瞬态且复杂地发生变化。这里要解决的一个基本问题是基于物理可解释的动态特性对集体运动网络进行分类。在这里,我们应用了一种称为图动态模式分解的基于数据的谱分析方法,该方法可获得用于集体运动分类的动态特性。我们以球赛为例,对不同全局行为下的战略集体运动进行了分类,并发现除了物理特性外,上下文节点信息对于分类至关重要。此外,我们发现最近代理之间关系中的特定标签更强的谱,提供了物理和语义解释。我们的方法有助于从非线性动力系统的角度理解生物复杂网络动态的原理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b37/7033192/569a7410d1e5/41598_2020_58064_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验