Battistin Federica, Vidal Alessio, Cavigli Paolo, Balducci Gabriele, Iengo Elisabetta, Alessio Enzo
Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy.
Inorg Chem. 2020 Mar 16;59(6):4068-4079. doi: 10.1021/acs.inorgchem.0c00080. Epub 2020 Feb 26.
This work demonstrates that PTA (1,3,5-triaza-7-phosphaadamantane) behaves as an orthogonal ligand between Ru(II) and Zn(II), since it selectively binds through the P atom to ruthenium and through one or more of the N atoms to zinc. This property of PTA was exploited for preparing the two monomeric porphyrin adducts with axially bound PTA, [Ru(TPP)(PTA-κ)] (, TPP = -tetraphenylporphyrin) and [Zn(TPP)(PTA-κ)] (). Next, we prepared a number of heterobimetallic Ru/Zn porphyrin polymeric networks-and two discrete molecular systems-mediated by -bridging PTA in which either both metals reside inside a porphyrin core, or one metal belongs to a porphyrin, either Ru(TPP) or Zn(TPP), and the other to a complex or salt of the complementary metal (i.e., -[RuCl(CO)(PTA-κ)] (), -[RuCl(PTA-κ)] (), Zn(CHCOO), and ZnCl). The molecular compounds , , -[{RuCl(PTA-κ)}{Zn(TPP)}] (), and [{Ru(TPP)(PTA-κ)(PTA-κ)}{ZnCl(OH)}] (), as well as the polymeric species [{Ru(TPP)(PTA-κ)}{Zn(TPP)}] (), -[{RuCl(CO)(PTA-κ)}{Zn(TPP)}] (), -[{RuCl(PTA-κ)}{Zn(TPP)}] (), and [{Ru(TPP)(PTA-κ)}{Zn(CHCOO)(CHOH)(OH)}] (), were structurally characterized by single crystal X-ray diffraction. Compounds , , , and are the first examples of solid-state porphyrin networks mediated by PTA. In , , , , and the bridging PTA has the κ binding mode, whereas in the 2D polymeric layers of it has the triple-bridging mode κ,2. The large number of compounds with the six-coordinate Zn(TPP) (the three polymeric networks of , and , out of five compounds) strongly suggests that the stereoelectronic features of PTA are particularly well-suited for this relatively rare type of coordination. Interestingly, the similar 1D polymeric chains and have different shapes (zigzag in vs "Greek frame" in ) because the {-Ru(PTA-κ)} fragment bridges two Zn(TPP) units with geometry in and with geometry in . Orthogonal "Greek frame" 1D chains make the polymeric network of . Having firmly established the binding preferences of PTA toward Ru(II) and Zn(II), we are confident that in the future a variety of Ru/Zn solid-state networks can be produced by changing the nature of the partners. In particular, there are several inert Ru(II) compounds that feature two or more P-bonded PTA ligands that might be exploited as connectors of well-defined geometry for the rational design of solid-state networks with Zn-porphyrins (or other Zn compounds).
这项工作表明,1,3,5 - 三氮杂 - 7 - 磷杂金刚烷(PTA)在钌(II)和锌(II)之间充当正交配体,因为它通过磷原子选择性地与钌结合,并通过一个或多个氮原子与锌结合。利用PTA的这一性质制备了两种轴向结合PTA的单体卟啉加合物,即[Ru(TPP)(PTA - κ)](TPP = 四苯基卟啉)和[Zn(TPP)(PTA - κ)]。接下来,我们制备了一些由桥连PTA介导的异双金属钌/锌卟啉聚合物网络以及两个离散分子体系,其中两种金属要么都位于卟啉核内,要么一种金属属于卟啉(Ru(TPP)或Zn(TPP)),另一种属于互补金属的配合物或盐(即 - [RuCl(CO)(PTA - κ)]、 - [RuCl(PTA - κ)]、Zn(CH₃COO)₂和ZnCl₂)。通过单晶X射线衍射对分子化合物 、 、 - [{RuCl(PTA - κ)}{Zn(TPP)}]、[{Ru(TPP)(PTA - κ)(PTA - κ)}{ZnCl(OH)}]以及聚合物物种[{Ru(TPP)(PTA - κ)}{Zn(TPP)}]、 - [{RuCl(CO)(PTA - κ)}{Zn(TPP)}]、 - [{RuCl(PTA - κ)}{Zn(TPP)}]和[{Ru(TPP)(PTA - κ)}{Zn(CH₃COO)(CH₂OH)(OH)}]进行了结构表征。化合物 、 、 和 是由PTA介导的固态卟啉网络的首例。在 、 、 、 和 中,桥连PTA具有κ配位模式,而在 的二维聚合物层中它具有三桥连模式κ³,2。大量具有六配位Zn(TPP)的化合物(五个化合物中的 、 和 的三个聚合物网络)强烈表明,PTA的立体电子特征特别适合这种相对罕见的配位类型。有趣的是,类似的一维聚合物链 和 具有不同的形状( 中为锯齿形, 中为“希腊框架”形),因为{-Ru(PTA - κ)}片段在 中以 几何构型桥连两个Zn(TPP)单元,在 中以 几何构型桥连。正交的“希腊框架”一维链构成了 的聚合物网络。在牢固确立了PTA对Ru(II)和Zn(II)的结合偏好后,我们相信未来通过改变配体的性质可以制备出各种钌/锌固态网络。特别是,有几种惰性Ru(II)化合物具有两个或更多与磷键合的PTA配体,可作为具有明确几何形状的连接体,用于合理设计含锌卟啉(或其他锌化合物)的固态网络。