Suppr超能文献

基于 TOF-MRA 的血流分数作为颅内动脉狭窄儿童卒中风险的评估指标。

Fractional Flow on TOF-MRA as a Measure of Stroke Risk in Children with Intracranial Arterial Stenosis.

机构信息

From the Department of Diagnostic Imaging (A.Y.I., A.A., M.M.S., P.M.)

Department of Clinical Sciences (A.Y.I.), Faculty of Medicine, Yarmouk University, Irbid, Jordan.

出版信息

AJNR Am J Neuroradiol. 2020 Mar;41(3):535-541. doi: 10.3174/ajnr.A6441. Epub 2020 Feb 27.

Abstract

BACKGROUND AND PURPOSE

Conventional angiography is the criterion standard for measuring intracranial arterial stenosis. We evaluated signal intensity ratios from TOF-MRA as a measure of intracranial stenosis and infarct risk in pediatric stroke.

MATERIALS AND METHODS

A retrospective study was undertaken in children with intracranial arterial stenosis, who had TOF-MRA and conventional angiography performed within 6 months. Arterial diameters were measured for percentage stenosis. ROI analysis on TOF-MRA measured signal intensity in pre- and poststenotic segments, with post-/pre-signal intensity ratios calculated. The Pearson correlation was used to compare percentage stenosis on MRA with conventional angiography and signal intensity ratios with percentage stenosis; the point-biserial correlation was used for infarcts compared with percentage stenosis and signal intensity ratios. Sensitivity, specificity, and positive and negative predictive values were calculated for determining severe (≥70%) stenosis from MRA and signal intensity ratios against the criterion standard conventional angiography. < .05 was considered statistically significant.

RESULTS

Seventy stenotic segments were found in 48 studies in 41 children (median age, 11.0 years; range, 5 months to 17.0 years; male/female ratio, 22:19): 20/41 (48.8%) bilateral, 11/41 (26.8%) right, and 10/41 (24.4%) left, with the most common site being the proximal middle cerebral artery (22/70, 31%). Moyamoya disease accounted for 27/41 (65.9%). Signal intensity ratios and conventional angiography stenosis showed a moderate negative correlation ( = -0.54, < .001). Receiver operating characteristic statistics showed an area under the curve of 0.86 for using post-/pre-signal intensity ratios to determine severe (≥70%) carotid stenosis, yielding a threshold of 1.00. Sensitivity, specificity, and positive and negative predictive values for severe stenosis were the following-MRA: 42.8%, 58.8%, 30.0%, and 71.4%; signal intensity ratio >1.00: 97.1%, 77.8%, 71.7%, and 97.4%; combination: 75.5%, 100%, 100%, and 76.8%, respectively. Signal intensity ratios decreased with increasing grade of stenosis (none/mild-moderate/severe/complete, < .001) and were less when associated with infarcts (0.81 ± 0.52 for arteries associated with downstream infarcts versus 1.31 ± 0.55 for arteries without associated infarcts, < .001).

CONCLUSIONS

Signal intensity ratios from TOF-MRA can serve as a noninvasive measure of intracranial arterial stenosis and allow identification of high-risk lesions in pediatric stroke.

摘要

背景与目的

传统血管造影术是测量颅内动脉狭窄的标准。我们评估了 TOF-MRA 的信号强度比作为儿童卒中颅内狭窄和梗死风险的指标。

材料与方法

对颅内动脉狭窄的儿童进行回顾性研究,这些儿童在 6 个月内进行了 TOF-MRA 和传统血管造影检查。测量动脉直径以计算狭窄百分比。TOF-MRA 上的 ROI 分析测量狭窄前和狭窄后的信号强度,并计算出后/前信号强度比。采用 Pearson 相关分析比较 MRA 与传统血管造影的狭窄百分比和信号强度比与狭窄百分比之间的相关性;采用点双变量相关分析比较梗死与狭窄百分比和信号强度比之间的相关性。为了从 MRA 和信号强度比确定严重(≥70%)狭窄,计算了针对标准的传统血管造影术的敏感性、特异性、阳性和阴性预测值。<.05 被认为具有统计学意义。

结果

在 41 名儿童的 48 项研究中发现了 70 个狭窄部位(中位数年龄 11.0 岁;范围 5 个月至 17.0 岁;男/女比例 22:19):20/41(48.8%)为双侧,11/41(26.8%)为右侧,10/41(24.4%)为左侧,最常见的部位是大脑中动脉近端(22/70,31%)。烟雾病占 27/41(65.9%)。信号强度比和传统血管造影术狭窄呈中度负相关(= -0.54,<.001)。受试者工作特征曲线分析显示,使用后/前信号强度比来确定严重(≥70%)颈动脉狭窄的曲线下面积为 0.86,得出阈值为 1.00。严重狭窄的敏感性、特异性、阳性和阴性预测值如下-MRA:42.8%、58.8%、30.0%和 71.4%;信号强度比>1.00:97.1%、77.8%、71.7%和 97.4%;联合:75.5%、100%、100%和 76.8%。信号强度比随狭窄程度的增加而降低(无/轻度-中度/重度/完全,<.001),与梗死相关时降低(与下游梗死相关的动脉为 0.81±0.52,与无相关的动脉为 1.31±0.55,<.001)。

结论

TOF-MRA 的信号强度比可以作为颅内动脉狭窄的无创测量指标,并可识别儿童卒中的高危病变。

相似文献

1
Fractional Flow on TOF-MRA as a Measure of Stroke Risk in Children with Intracranial Arterial Stenosis.
AJNR Am J Neuroradiol. 2020 Mar;41(3):535-541. doi: 10.3174/ajnr.A6441. Epub 2020 Feb 27.
4
Comparison of 7.0- and 3.0-T MRI and MRA in ischemic-type moyamoya disease: preliminary experience.
J Neurosurg. 2016 Jun;124(6):1716-25. doi: 10.3171/2015.5.JNS15767. Epub 2015 Nov 6.
6
Association of Fractional Flow on 3D-TOF-MRA with Cerebral Perfusion in Patients with MCA Stenosis.
AJNR Am J Neuroradiol. 2019 Jul;40(7):1124-1131. doi: 10.3174/ajnr.A6095. Epub 2019 Jun 13.
8
The Pathophysiology of Watershed Infarction: A Three-Dimensional Time-of-Flight Magnetic Resonance Angiography Study.
J Stroke Cerebrovasc Dis. 2017 Sep;26(9):1966-1973. doi: 10.1016/j.jstrokecerebrovasdis.2017.06.016. Epub 2017 Jul 8.
9
Accuracy and utility of three-dimensional contrast-enhanced magnetic resonance angiography in planning carotid stenting.
J Vasc Surg. 2007 Aug;46(2):257-63; discussion 263-4. doi: 10.1016/j.jvs.2007.03.051. Epub 2007 Jun 28.
10
Noninvasive fractional flow on MRA predicts stroke risk of intracranial stenosis.
J Neuroimaging. 2015 Jan-Feb;25(1):87-91. doi: 10.1111/jon.12101. Epub 2014 Mar 5.

引用本文的文献

1
Role of Hypoperfusion Intensity Ratio in Vessel Occlusions: A Review on Safety and Clinical Outcomes.
AJNR Am J Neuroradiol. 2025 Jun 3;46(6):1069-1081. doi: 10.3174/ajnr.A8557.
2
Development and practical evaluation of a saturation effect learning simulator for inflow magnetic resonance angiography.
Radiol Phys Technol. 2022 Dec;15(4):311-322. doi: 10.1007/s12194-022-00671-5. Epub 2022 Aug 25.
3
Can intracranial time-of-flight-MR angiography predict extracranial carotid artery stenosis?
J Neurol. 2022 May;269(5):2743-2749. doi: 10.1007/s00415-021-10876-0. Epub 2021 Nov 9.

本文引用的文献

2
Decreased Signal Intensity Ratio on MRA Reflects Misery Perfusion on SPECT in Patients with Intracranial Stenosis.
J Neuroimaging. 2018 Mar;28(2):206-211. doi: 10.1111/jon.12489. Epub 2017 Dec 7.
3
Clinical and Imaging Characteristics of Arteriopathy Subtypes in Children with Arterial Ischemic Stroke: Results of the VIPS Study.
AJNR Am J Neuroradiol. 2017 Nov;38(11):2172-2179. doi: 10.3174/ajnr.A5376. Epub 2017 Oct 5.
4
Quantifying Intracranial Internal Carotid Artery Stenosis on MR Angiography.
AJNR Am J Neuroradiol. 2017 May;38(5):986-990. doi: 10.3174/ajnr.A5113. Epub 2017 Mar 16.
5
Treatment and imaging of intracranial atherosclerotic stenosis: current perspectives and future directions.
Brain Behav. 2016 Aug 31;6(11):e00536. doi: 10.1002/brb3.536. eCollection 2016 Nov.
7
Noninvasive fractional flow on MRA predicts stroke risk of intracranial stenosis.
J Neuroimaging. 2015 Jan-Feb;25(1):87-91. doi: 10.1111/jon.12101. Epub 2014 Mar 5.
8
Flow artifact in the anterior communicating artery resembling aneurysm on the time of flight MR angiogram.
Acta Radiol. 2014 Dec;55(10):1253-7. doi: 10.1177/0284185113520153. Epub 2014 Jan 10.
9
Interobserver reproducibility of signal intensity ratio on magnetic resonance angiography for hemodynamic impact of intracranial atherosclerosis.
J Stroke Cerebrovasc Dis. 2013 Nov;22(8):e615-9. doi: 10.1016/j.jstrokecerebrovasdis.2013.07.036. Epub 2013 Sep 25.
10
Intracranial atherosclerosis.
Lancet. 2014 Mar 15;383(9921):984-98. doi: 10.1016/S0140-6736(13)61088-0. Epub 2013 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验