Suppr超能文献

PTBP1 在可变剪接、糖酵解和致癌作用中的作用。

Roles of PTBP1 in alternative splicing, glycolysis, and oncogensis.

机构信息

NHC Key Laboratory of Carcinogenesis (Central South University) and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China.

出版信息

J Zhejiang Univ Sci B. 2020;21(2):122-136. doi: 10.1631/jzus.B1900422. Epub 2020 Feb 5.

Abstract

Polypyrimidine tract-binding protein 1 (PTBP1) plays an essential role in splicing and is expressed in almost all cell types in humans, unlike the other proteins of the PTBP family. PTBP1 mediates several cellular processes in certain types of cells, including the growth and differentiation of neuronal cells and activation of immune cells. Its function is regulated by various molecules, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and RNA-binding proteins. PTBP1 plays roles in various diseases, particularly in some cancers, including colorectal cancer, renal cell cancer, breast cancer, and glioma. In cancers, it acts mainly as a regulator of glycolysis, apoptosis, proliferation, tumorigenesis, invasion, and migration. The role of PTBP1 in cancer has become a popular research topic in recent years, and this research has contributed greatly to the formulation of a useful therapeutic strategy for cancer. In this review, we summarize recent findings related to PTBP1 and discuss how it regulates the development of cancer cells.

摘要

多嘧啶 tract 结合蛋白 1(PTBP1)在剪接中发挥着重要作用,几乎在人类所有细胞类型中都有表达,这与 PTBP 家族的其他蛋白不同。PTBP1 在某些类型的细胞中介导多种细胞过程,包括神经元细胞的生长和分化以及免疫细胞的激活。其功能受多种分子的调节,包括 microRNAs(miRNAs)、长非编码 RNA(lncRNA)和 RNA 结合蛋白。PTBP1 在各种疾病中发挥作用,特别是在某些癌症中,包括结直肠癌、肾细胞癌、乳腺癌和神经胶质瘤。在癌症中,它主要作为糖酵解、细胞凋亡、增殖、肿瘤发生、侵袭和迁移的调节剂发挥作用。PTBP1 在癌症中的作用已成为近年来的热门研究课题,这一研究对制定癌症的有效治疗策略做出了巨大贡献。在这篇综述中,我们总结了与 PTBP1 相关的最新发现,并讨论了它如何调节癌细胞的发展。

相似文献

1
Roles of PTBP1 in alternative splicing, glycolysis, and oncogensis.
J Zhejiang Univ Sci B. 2020;21(2):122-136. doi: 10.1631/jzus.B1900422. Epub 2020 Feb 5.
3
High expression of PTBP1 promote invasion of colorectal cancer by alternative splicing of cortactin.
Oncotarget. 2017 May 30;8(22):36185-36202. doi: 10.18632/oncotarget.15873.
4
PTBP1 as a potential regulator of disease.
Mol Cell Biochem. 2024 Nov;479(11):2875-2894. doi: 10.1007/s11010-023-04905-x. Epub 2023 Dec 22.
5
Splicing factors PTBP1 and PTBP2 promote proliferation and migration of glioma cell lines.
Brain. 2009 Aug;132(Pt 8):2277-88. doi: 10.1093/brain/awp153. Epub 2009 Jun 8.
6
Polypyrimidine tract-binding protein 1 regulates the alternative splicing of dopamine receptor D2.
J Neurochem. 2011 Jan;116(1):76-81. doi: 10.1111/j.1471-4159.2010.07086.x. Epub 2010 Dec 2.
7
LncRNA CCAT1 facilitates the progression of gastric cancer via PTBP1-mediated glycolysis enhancement.
J Exp Clin Cancer Res. 2023 Sep 23;42(1):246. doi: 10.1186/s13046-023-02827-6.
8
A Short Tandem Repeat-Enriched RNA Assembles a Nuclear Compartment to Control Alternative Splicing and Promote Cell Survival.
Mol Cell. 2018 Nov 1;72(3):525-540.e13. doi: 10.1016/j.molcel.2018.08.041. Epub 2018 Oct 11.
9
Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells.
Oncogene. 2016 Apr 21;35(16):2031-9. doi: 10.1038/onc.2015.270. Epub 2015 Aug 3.
10
PTBP1 knockdown overcomes the resistance to vincristine and oxaliplatin in drug-resistant colon cancer cells through regulation of glycolysis.
Biomed Pharmacother. 2018 Dec;108:194-200. doi: 10.1016/j.biopha.2018.09.031. Epub 2018 Sep 13.

引用本文的文献

3
5
PTBP1 and Cancer: From RNA Regulation to Therapeutic Potential.
J Cell Mol Med. 2025 Jul;29(13):e70675. doi: 10.1111/jcmm.70675.
6
Alternative Splicing and CaV-Associated Channelopathies.
Wiley Interdiscip Rev RNA. 2025 May-Jun;16(3):e70016. doi: 10.1002/wrna.70016.
7
PKM2-mediated metabolic reprogramming of microglia in neuroinflammation.
Cell Death Discov. 2025 Apr 6;11(1):149. doi: 10.1038/s41420-025-02453-5.
8
Inverted Alu repeats in loop-out exon skipping across hominoid evolution.
bioRxiv. 2025 Mar 10:2025.03.07.642063. doi: 10.1101/2025.03.07.642063.
9
Landscape of chimeric RNAs in COVID-19 patient blood.
Genes Dis. 2024 Jun 6;12(3):101348. doi: 10.1016/j.gendis.2024.101348. eCollection 2025 May.
10
Hsa_circ_0001756 drives gastric cancer glycolysis by increasing the expression and stability of PGK1 mRNA.
Front Immunol. 2025 Feb 20;16:1511247. doi: 10.3389/fimmu.2025.1511247. eCollection 2025.

本文引用的文献

1
Glycolytic Enzyme PKM2 Mediates Autophagic Activation to Promote Cell Survival in NPM1-Mutated Leukemia.
Int J Biol Sci. 2019 Mar 1;15(4):882-894. doi: 10.7150/ijbs.30290. eCollection 2019.
2
Dysregulation of the Splicing Machinery Is Associated to the Development of Nonalcoholic Fatty Liver Disease.
J Clin Endocrinol Metab. 2019 Aug 1;104(8):3389-3402. doi: 10.1210/jc.2019-00021.
3
CD19 CAR T cell product and disease attributes predict leukemia remission durability.
J Clin Invest. 2019 Mar 12;129(5):2123-2132. doi: 10.1172/JCI125423. Print 2019 May 1.
5
FGFR1β is a driver isoform of FGFR1 alternative splicing in breast cancer cells.
Oncotarget. 2019 Jan 1;10(1):30-44. doi: 10.18632/oncotarget.26530.
7
CAR T cell therapy: inroads to response and resistance.
Nat Rev Immunol. 2019 Feb;19(2):73-74. doi: 10.1038/s41577-018-0119-y.
8
Ethical considerations of cellular immunotherapy for cancer.
J Zhejiang Univ Sci B. 2019;20(1):23-31. doi: 10.1631/jzus.B1800421.
9
NOVA1 directs PTBP1 to hTERT pre-mRNA and promotes telomerase activity in cancer cells.
Oncogene. 2019 Apr;38(16):2937-2952. doi: 10.1038/s41388-018-0639-8. Epub 2018 Dec 19.
10
Developmental Xist induction is mediated by enhanced splicing.
Nucleic Acids Res. 2019 Feb 20;47(3):1532-1543. doi: 10.1093/nar/gky1198.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验