Department of Human Oncology, University of Wisconsin in Madison, Madison, WI, USA.
Department of Human Oncology, University of Wisconsin in Madison, Madison, WI, USA.
Mutat Res. 2020 Jan-Apr;819-820:111690. doi: 10.1016/j.mrfmmm.2020.111690. Epub 2020 Feb 20.
The serine/threonine kinase AKT, also known as protein kinase B (PKB), is the major substrate to phosphoinositide 3-kinase (PI3K) and consists of three paralogs: AKT1 (PKBα), AKT2 (PKBβ) and AKT3 (PKBγ). The PI3K/AKT pathway is normally activated by binding of ligands to membrane-bound receptor tyrosine kinases (RTKs) as well as downstream to G-protein coupled receptors and integrin-linked kinase. Through multiple downstream substrates, activated AKT controls a wide variety of cellular functions including cell proliferation, survival, metabolism, and angiogenesis in both normal and malignant cells. In human cancers, the PI3K/AKT pathway is most frequently hyperactivated due to mutations and/or overexpression of upstream components. Aberrant expression of RTKs, gain of function mutations in PIK3CA, RAS, PDPK1, and AKT itself, as well as loss of function mutation in AKT phosphatases are genetic lesions that confer hyperactivation of AKT. Activated AKT stimulates DNA repair, e.g. double strand break repair after radiotherapy. Likewise, AKT attenuates chemotherapy-induced apoptosis. These observations suggest that a crucial link exists between AKT and DNA damage. Thus, AKT could be a major predictive marker of conventional cancer therapy, molecularly targeted therapy, and immunotherapy for solid tumors. In this review, we summarize the current understanding by which activated AKT mediates resistance to cancer treatment modalities, i.e. radiotherapy, chemotherapy, and RTK targeted therapy. Next, the effect of AKT on response of tumor cells to RTK targeted strategies will be discussed. Finally, we will provide a brief summary on the clinical trials of AKT inhibitors in combination with radiochemotherapy, RTK targeted therapy, and immunotherapy.
丝氨酸/苏氨酸激酶 AKT,也称为蛋白激酶 B(PKB),是磷酸肌醇 3-激酶(PI3K)的主要底物,由三个同工酶组成:AKT1(PKBα)、AKT2(PKBβ)和 AKT3(PKBγ)。PI3K/AKT 途径通常通过配体与膜结合受体酪氨酸激酶(RTKs)以及下游 G 蛋白偶联受体和整合素连接激酶的结合而被激活。通过多种下游底物,激活的 AKT 控制着广泛的细胞功能,包括正常和恶性细胞中的细胞增殖、存活、代谢和血管生成。在人类癌症中,PI3K/AKT 途径由于上游成分的突变和/或过表达而最常被过度激活。RTKs 的异常表达、PIK3CA、RAS、PDPK1 和 AKT 本身的功能获得性突变,以及 AKT 磷酸酶的功能丧失性突变是赋予 AKT 过度激活的遗传病变。激活的 AKT 可刺激 DNA 修复,例如放疗后双链断裂修复。同样,AKT 可减弱化疗诱导的细胞凋亡。这些观察结果表明,AKT 与 DNA 损伤之间存在关键联系。因此,AKT 可能是传统癌症治疗、分子靶向治疗和实体瘤免疫治疗的主要预测标志物。在这篇综述中,我们总结了目前对激活的 AKT 介导癌症治疗方式(即放疗、化疗和 RTK 靶向治疗)耐药性的理解。接下来,将讨论 AKT 对肿瘤细胞对 RTK 靶向策略反应的影响。最后,我们将简要总结 AKT 抑制剂与放化疗、RTK 靶向治疗和免疫治疗联合的临床试验。