Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA.
Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA.
Sci Adv. 2020 Feb 21;6(8):eaaz2322. doi: 10.1126/sciadv.aaz2322. eCollection 2020 Feb.
The retrosplenial cortex is reciprocally connected with multiple structures implicated in spatial cognition, and damage to the region itself produces numerous spatial impairments. Here, we sought to characterize spatial correlates of neurons within the region during free exploration in two-dimensional environments. We report that a large percentage of retrosplenial cortex neurons have spatial receptive fields that are active when environmental boundaries are positioned at a specific orientation and distance relative to the animal itself. We demonstrate that this vector-based location signal is encoded in egocentric coordinates, is localized to the dysgranular retrosplenial subregion, is independent of self-motion, and is context invariant. Further, we identify a subpopulation of neurons with this response property that are synchronized with the hippocampal theta oscillation. Accordingly, the current work identifies a robust egocentric spatial code in retrosplenial cortex that can facilitate spatial coordinate system transformations and support the anchoring, generation, and utilization of allocentric representations.
后扣带回皮层与多个涉及空间认知的结构相互连接,而该区域本身的损伤会导致多种空间障碍。在这里,我们试图在二维环境中自由探索时,描述该区域内神经元的空间相关性。我们报告说,很大一部分后扣带回皮层神经元具有空间感受野,当环境边界相对于动物自身处于特定方位和距离时,该感受野会激活。我们证明,这种基于向量的位置信号是以自我为中心的坐标编码的,位于颗粒状后扣带回亚区,与自身运动无关,并且与上下文无关。此外,我们还确定了具有这种反应特性的神经元亚群,它们与海马θ节律同步。因此,目前的工作确定了后扣带回皮层中一种稳健的自我中心空间编码,它可以促进空间坐标系的转换,并支持地标、生成和利用自我中心的表示。