Suppr超能文献

吸气节律发生的涌现要素:网络同步和同步传播。

Emergent Elements of Inspiratory Rhythmogenesis: Network Synchronization and Synchrony Propagation.

机构信息

Department of Neurobiology, University of California, Los Angeles, Box 951763, Los Angeles, CA 90095-1763, USA.

Department of Neurobiology, University of California, Los Angeles, Box 951763, Los Angeles, CA 90095-1763, USA.

出版信息

Neuron. 2020 May 6;106(3):482-497.e4. doi: 10.1016/j.neuron.2020.02.005. Epub 2020 Mar 3.

Abstract

We assessed the mechanism of mammalian breathing rhythmogenesis in the preBötzinger complex (preBötC) in vitro, where experimental tests remain inconsistent with hypotheses of canonical rhythmogenic cellular or synaptic mechanisms, i.e., pacemaker neurons or inhibition. Under rhythmic conditions, in each cycle, an inspiratory burst emerges as (presumptive) preBötC rhythmogenic neurons transition from aperiodic uncorrelated population spike activity to become increasingly synchronized during preinspiration (for ∼50-500 ms), which can trigger inspiratory bursts that propagate to motoneurons. In nonrhythmic conditions, antagonizing GABA receptors can initiate this synchronization while inducing a higher conductance state in nonrhythmogenic preBötC output neurons. Our analyses uncover salient features of preBötC network dynamics where inspiratory bursts arise when and only when the preBötC rhythmogenic subpopulation strongly synchronizes to drive output neurons. Furthermore, downstream propagation of preBötC network activity, ultimately to motoneurons, is dependent on the strength of input synchrony onto preBötC output neurons exemplifying synchronous propagation of network activity.

摘要

我们评估了哺乳动物呼吸节律发生在 PreBötzinger 复合体(preBötC)中的机制,在体外,实验测试与经典节律发生细胞或突触机制的假设不一致,即起搏神经元或抑制。在有节奏的条件下,在每个周期中,吸气爆发出现,因为(假定的)preBötC 节律发生神经元从无关联的群体峰电位活动过渡到在预吸气期间变得越来越同步(约 50-500ms),这可以触发传播到运动神经元的吸气爆发。在非节律条件下,拮抗 GABA 受体可以引发这种同步,同时诱导非节律发生的 preBötC 输出神经元中的更高电导状态。我们的分析揭示了 preBötC 网络动力学的显著特征,即当 preBötC 节律发生亚群强烈同步以驱动输出神经元时,吸气爆发才会出现。此外,preBötC 网络活动的下游传播,最终到运动神经元,取决于输入到 preBötC 输出神经元的同步强度,这体现了网络活动的同步传播。

相似文献

1
Emergent Elements of Inspiratory Rhythmogenesis: Network Synchronization and Synchrony Propagation.
Neuron. 2020 May 6;106(3):482-497.e4. doi: 10.1016/j.neuron.2020.02.005. Epub 2020 Mar 3.
2
Distinct inspiratory rhythm and pattern generating mechanisms in the preBötzinger complex.
J Neurosci. 2013 May 29;33(22):9235-45. doi: 10.1523/JNEUROSCI.4143-12.2013.
3
Microcircuit Synchronization and Heavy-Tailed Synaptic Weight Distribution Augment preBötzinger Complex Bursting Dynamics.
J Neurosci. 2023 Jan 11;43(2):240-260. doi: 10.1523/JNEUROSCI.1195-22.2022. Epub 2022 Nov 18.
4
Functional Interactions between Mammalian Respiratory Rhythmogenic and Premotor Circuitry.
J Neurosci. 2016 Jul 6;36(27):7223-33. doi: 10.1523/JNEUROSCI.0296-16.2016.
5
Dendritic A-Current in Rhythmically Active PreBötzinger Complex Neurons in Organotypic Cultures from Newborn Mice.
J Neurosci. 2018 Mar 21;38(12):3039-3049. doi: 10.1523/JNEUROSCI.3342-17.2018. Epub 2018 Feb 19.
7
Opioids modulate an emergent rhythmogenic process to depress breathing.
Elife. 2019 Dec 16;8:e50613. doi: 10.7554/eLife.50613.
9
Respiratory Rhythm Generation: The Whole Is Greater Than the Sum of the Parts.
Adv Exp Med Biol. 2017;1015:147-161. doi: 10.1007/978-3-319-62817-2_9.

引用本文的文献

1
The road toward a physiological control of artificial respiration: the role of bio-inspired neuronal networks.
Front Neurosci. 2025 Aug 28;19:1638547. doi: 10.3389/fnins.2025.1638547. eCollection 2025.
3
A sustained Hox program delineates brainstem neurons essential for breathing.
bioRxiv. 2025 Aug 1:2025.08.01.668179. doi: 10.1101/2025.08.01.668179.
4
Ion channels in respiratory rhythm generation and sensorimotor integration.
Neuron. 2025 Jul 21. doi: 10.1016/j.neuron.2025.06.011.
5
Sigh generation in preBötzinger complex.
Elife. 2025 Jun 24;13:RP100192. doi: 10.7554/eLife.100192.
6
Targeting Spinal Interneurons for Respiratory Recovery After Spinal Cord Injury.
Cells. 2025 Feb 15;14(4):288. doi: 10.3390/cells14040288.
8
The hypoxic respiratory response of the pre-Bötzinger complex.
Heliyon. 2024 Jul 11;10(14):e34491. doi: 10.1016/j.heliyon.2024.e34491. eCollection 2024 Jul 30.
9
Characterisation of sleep apneas and respiratory circuitry in mice lacking CDKL5.
J Sleep Res. 2025 Apr;34(2):e14295. doi: 10.1111/jsr.14295. Epub 2024 Jul 24.

本文引用的文献

1
Conjunctive changes in multiple ion channels mediate activity-dependent intrinsic plasticity in hippocampal granule cells.
iScience. 2022 Feb 14;25(3):103922. doi: 10.1016/j.isci.2022.103922. eCollection 2022 Mar 18.
2
Opioids modulate an emergent rhythmogenic process to depress breathing.
Elife. 2019 Dec 16;8:e50613. doi: 10.7554/eLife.50613.
3
A spatially dynamic network underlies the generation of inspiratory behaviors.
Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7493-7502. doi: 10.1073/pnas.1900523116. Epub 2019 Mar 27.
5
Stores, Channels, Glue, and Trees: Active Glial and Active Dendritic Physiology.
Mol Neurobiol. 2019 Mar;56(3):2278-2299. doi: 10.1007/s12035-018-1223-5. Epub 2018 Jul 16.
6
Breathing matters.
Nat Rev Neurosci. 2018 Jun;19(6):351-367. doi: 10.1038/s41583-018-0003-6.
7
The interdependence of excitation and inhibition for the control of dynamic breathing rhythms.
Nat Commun. 2018 Feb 26;9(1):843. doi: 10.1038/s41467-018-03223-x.
8
Efferent projections of excitatory and inhibitory preBötzinger Complex neurons.
J Comp Neurol. 2018 Jun 1;526(8):1389-1402. doi: 10.1002/cne.24415. Epub 2018 Mar 9.
9
A V0 core neuronal circuit for inspiration.
Nat Commun. 2017 Sep 15;8(1):544. doi: 10.1038/s41467-017-00589-2.
10
Theta-frequency selectivity in the somatic spike-triggered average of rat hippocampal pyramidal neurons is dependent on HCN channels.
J Neurophysiol. 2017 Oct 1;118(4):2251-2266. doi: 10.1152/jn.00356.2017. Epub 2017 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验