Suppr超能文献

二甲双胍对糖尿病小鼠大脑线粒体功能障碍和内质网应激的保护作用。

The protective effect of metformin on mitochondrial dysfunction and endoplasmic reticulum stress in diabetic mice brain.

机构信息

Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa.

Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa.

出版信息

Eur J Pharmacol. 2020 May 15;875:173059. doi: 10.1016/j.ejphar.2020.173059. Epub 2020 Mar 1.

Abstract

Diabetes is a metabolic disorder associated with mitochondrial (mt) dysfunction and oxidative stress. The molecular mechanisms involved in diabetes-associated neurological complications remain elusive. This study aims to investigate the protective effect of metformin (MF) on regulatory networks and integrated stress responses in brain tissue of Streptozotocin (STZ)-induced diabetic mice. STZ-induced diabetic mice were treated with MF (20 mg/kg BW), and whole brain tissue was harvested for further analysis. Protein carbonylation was measured as a marker of neuronal oxidative stress. Protein expression of mt chaperones, maintenance proteins, and regulators of the unfolded protein response (UPR) were measured by Western blot. Transcript levels of antioxidant enzyme GSTA4; mt biogenesis markers, ER stress regulators, and miR-132 and miR-148a were analysed using qPCR. The results showed that MF efficiently reduced protein carbonylation and oxidation. Mt function was improved by MF-treatment through upregulation of chaperone proteins (HSP60, HSP70 and LonP1). MF elicits the UPR to attenuate ER stress through a miR-132 repression mechanism. Additionally, MF was found to elevate deacetylases- Sirt1, Sirt3; and mt biogenesis marker PGC-1α through miR-148a repression. This is the first study to demonstrate the epigenetic regulation of mt maintenance by MF in diabetic C57BL/6 mouse whole brain tissue. We thus conclude that MF, beyond its anti-hyperglycaemic role, mediates neuroprotection through epigenomic and integrated stress responses in diabetic mice.

摘要

糖尿病是一种与线粒体(mt)功能障碍和氧化应激有关的代谢紊乱。与糖尿病相关的神经并发症相关的分子机制仍不清楚。本研究旨在探讨二甲双胍(MF)对链脲佐菌素(STZ)诱导的糖尿病小鼠脑组织中调节网络和综合应激反应的保护作用。用 MF(20mg/kg BW)处理 STZ 诱导的糖尿病小鼠,并采集全脑组织进行进一步分析。蛋白质羰基化作为神经元氧化应激的标志物进行测量。通过 Western blot 测量 mt 伴侣蛋白、维持蛋白和未折叠蛋白反应(UPR)调节剂的蛋白表达。使用 qPCR 分析抗氧化酶 GSTA4 的转录水平;mt 生物发生标志物、ER 应激调节剂以及 miR-132 和 miR-148a。结果表明,MF 可有效降低蛋白质羰基化和氧化。MF 通过上调伴侣蛋白(HSP60、HSP70 和 LonP1)改善 mt 功能。MF 通过 miR-132 抑制机制引发 UPR 以减轻 ER 应激。此外,MF 被发现通过 miR-148a 抑制来提高去乙酰化酶-Sirt1、Sirt3 和 mt 生物发生标志物 PGC-1α。这是首次证明 MF 在糖尿病 C57BL/6 小鼠全脑组织中通过表观遗传调节 mt 维持的研究。因此,我们得出结论,MF 除了具有抗高血糖作用外,还通过糖尿病小鼠的表观基因组和综合应激反应介导神经保护作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验