Suppr超能文献

X 射线自由电子激光和 NMR 结构揭示弗朗西斯氏菌脂蛋白的药物靶标构象空间对抗兔热病。

XFEL and NMR Structures of Francisella Lipoprotein Reveal Conformational Space of Drug Target against Tularemia.

机构信息

Center for Applied Structural Discovery, the Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.

Center for Applied Structural Discovery, the Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; Center for the Development of TherapeuticsThe Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

出版信息

Structure. 2020 May 5;28(5):540-547.e3. doi: 10.1016/j.str.2020.02.005. Epub 2020 Mar 5.

Abstract

Francisella tularensis is the causative agent for the potentially fatal disease tularemia. The lipoprotein Flpp3 has been identified as a virulence determinant of tularemia with no sequence homology outside the Francisella genus. We report a room temperature structure of Flpp3 determined by serial femtosecond crystallography that exists in a significantly different conformation than previously described by the NMR-determined structure. Furthermore, we investigated the conformational space and energy barriers between these two structures by molecular dynamics umbrella sampling and identified three low-energy intermediate states, transitions between which readily occur at room temperature. We have also begun to investigate organic compounds in silico that may act as inhibitors to Flpp3. This work paves the road to developing targeted therapeutics against tularemia and aides in our understanding of the disease mechanisms of tularemia.

摘要

土拉弗朗西斯菌是一种潜在致命疾病——兔热病的病原体。脂蛋白 Flpp3 已被确定为兔热病的毒力决定因素,在弗朗西斯菌属之外没有序列同源性。我们通过连续飞秒晶体学报告了 Flpp3 的室温结构,该结构与以前通过 NMR 确定的结构存在显著不同的构象。此外,我们通过分子动力学伞状采样研究了这两种结构之间的构象空间和能量障碍,并确定了三个低能量中间状态,在室温下很容易在这些状态之间发生转变。我们还开始在计算机上研究可能作为 Flpp3 抑制剂的有机化合物。这项工作为开发针对兔热病的靶向治疗铺平了道路,并有助于我们了解兔热病的发病机制。

相似文献

1
XFEL and NMR Structures of Francisella Lipoprotein Reveal Conformational Space of Drug Target against Tularemia.
Structure. 2020 May 5;28(5):540-547.e3. doi: 10.1016/j.str.2020.02.005. Epub 2020 Mar 5.
2
NMR Structure of Francisella tularensis Virulence Determinant Reveals Structural Homology to Bet v1 Allergen Proteins.
Structure. 2015 Jun 2;23(6):1116-22. doi: 10.1016/j.str.2015.03.025. Epub 2015 May 21.
3
Identification, cloning, expression, and purification of Francisella lpp3: an immunogenic lipoprotein.
Microbiol Res. 2010 Sep 20;165(7):531-45. doi: 10.1016/j.micres.2009.11.004. Epub 2009 Dec 14.
5
Structure of the conserved Francisella virulence protein FvfA.
Acta Crystallogr D Struct Biol. 2017 Oct 1;73(Pt 10):814-821. doi: 10.1107/S205979831701333X. Epub 2017 Sep 27.
6
Rapid countermeasure discovery against Francisella tularensis based on a metabolic network reconstruction.
PLoS One. 2013 May 21;8(5):e63369. doi: 10.1371/journal.pone.0063369. Print 2013.
8
Francisella tularensis as a potential agent of bioterrorism?
Expert Rev Anti Infect Ther. 2015 Feb;13(2):141-4. doi: 10.1586/14787210.2015.986463. Epub 2014 Nov 21.
10

引用本文的文献

1
De novo design of high-affinity miniprotein binders targeting virulence factor.
bioRxiv. 2025 Jul 5:2025.07.02.662053. doi: 10.1101/2025.07.02.662053.
3
CryoFold: determining protein structures and data-guided ensembles from cryo-EM density maps.
Matter. 2021 Oct 6;4(10):3195-3216. doi: 10.1016/j.matt.2021.09.004. Epub 2021 Sep 22.
4
Data-guided Multi-Map variables for ensemble refinement of molecular movies.
J Chem Phys. 2020 Dec 7;153(21):214102. doi: 10.1063/5.0022433.
5
The surface lipoproteins of gram-negative bacteria: Protectors and foragers in harsh environments.
J Biol Chem. 2021 Jan-Jun;296:100147. doi: 10.1074/jbc.REV120.008745. Epub 2020 Dec 10.

本文引用的文献

1
Adaptive Immunity to and Considerations for Vaccine Development.
Front Cell Infect Microbiol. 2018 Apr 6;8:115. doi: 10.3389/fcimb.2018.00115. eCollection 2018.
2
Confronts the Complement System.
Front Cell Infect Microbiol. 2017 Dec 19;7:523. doi: 10.3389/fcimb.2017.00523. eCollection 2017.
3
Innate Immune Recognition: Implications for the Interaction of with the Host Immune System.
Front Cell Infect Microbiol. 2017 Oct 16;7:446. doi: 10.3389/fcimb.2017.00446. eCollection 2017.
6
Temperature-shuffled parallel cascade selection molecular dynamics accelerates the structural transitions of proteins.
J Comput Chem. 2017 Dec 5;38(31):2671-2674. doi: 10.1002/jcc.25060. Epub 2017 Aug 31.
7
Methodology for the Simulation of Molecular Motors at Different Scales.
J Phys Chem B. 2017 Apr 20;121(15):3502-3514. doi: 10.1021/acs.jpcb.6b09350. Epub 2016 Nov 30.
8
Chemomechanical Coupling in Hexameric Protein-Protein Interfaces Harnesses Energy within V-Type ATPases.
J Am Chem Soc. 2017 Jan 11;139(1):293-310. doi: 10.1021/jacs.6b10744. Epub 2016 Dec 23.
9
The arsenal of pathogens and antivirulence therapeutic strategies for disarming them.
Drug Des Devel Ther. 2016 May 27;10:1795-806. doi: 10.2147/DDDT.S98939. eCollection 2016.
10
Recent developments in .
J Appl Crystallogr. 2016 Mar 29;49(Pt 2):680-689. doi: 10.1107/S1600576716004751. eCollection 2016 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验