文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

紧密连接丝的组装:Claudin-10b 和 Claudin-3 形成同型四聚体构建块,以非通道依赖的方式聚合。

Assembly of Tight Junction Strands: Claudin-10b and Claudin-3 Form Homo-Tetrameric Building Blocks that Polymerise in a Channel-Independent Manner.

机构信息

Charité - Universitätsmedizin Berlin, Institute of Clinical Physiology, Hindenburgdamm 30, 12203 Berlin, Germany.

Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany.

出版信息

J Mol Biol. 2020 Mar 27;432(7):2405-2427. doi: 10.1016/j.jmb.2020.02.034. Epub 2020 Mar 4.


DOI:10.1016/j.jmb.2020.02.034
PMID:32142789
Abstract

Tight junctions regulate paracellular permeability size and charge selectively. Models have been proposed for the molecular architecture of tight junction strands and paracellular channels. However, they are not fully consistent with experimental and structural data. Here, we analysed the architecture of claudin-based tight junction strands and channels by cellular reconstitution of strands, structure-guided mutagenesis, in silico protein docking and oligomer modelling. Prototypic channel- (Cldn10b) and barrier-forming (Cldn3) claudins were analysed. Förster resonance energy transfer (FRET) assays indicated multistep claudin polymerisation, starting with cis-oligomerization specific to the claudin subtype, followed by trans-interaction-triggered cis-polymerisation. Alternative protomer interfaces were modelled in silico and tested by cysteine-mediated crosslinking, confocal- and freeze fracture EM-based analysis of strand formation. The analysed claudin mutants included also mutations causing the HELIX syndrome. The results indicated that protomers in Cldn10b and Cldn3 strands form similar antiparallel double rows, as has been suggested for Cldn15. Mutually stabilising -hydrophilic and hydrophobic - cis- and trans-interfaces were identified that contained novel key residues of extracellular segments ECS1 and ECS2. Hydrophobic clustering of the flexible ECS1 β1β2 loops together with ECS2-ECS2 trans-interaction is suggested to be the driving force for conjunction of tetrameric building blocks into claudin polymers. Cldn10b and Cldn3 are indicated to share this polymerisation mechanism. However, in the paracellular centre of tetramers, electrostatic repulsion may lead to formation of pores (Cldn10b) and electrostatic attraction to barriers (Cldn3). Combining in vitro data and in silico modelling, this study improves mechanistic understanding of paracellular permeability regulation by elucidating claudin assembly and its pathologic alteration as in HELIX syndrome.

摘要

紧密连接调节细胞旁通透性的大小和电荷选择性。已经提出了用于紧密连接链和细胞旁通道的分子结构模型。然而,它们与实验和结构数据不完全一致。在这里,我们通过链的细胞重建、结构引导的突变、计算机蛋白对接和寡聚体建模分析了基于 Claudin 的紧密连接链和通道的结构。分析了典型的通道(Cldn10b)和形成屏障的(Cldn3)Claudin。荧光共振能量转移(FRET)测定表明 Claudin 多聚化的多步骤,从特定于 Claudin 亚型的顺式寡聚化开始,然后是触发顺式聚合的反式相互作用。在计算机中模拟了替代的前体界面,并通过半胱氨酸介导的交联、共聚焦和冷冻断裂 EM 分析链形成进行了测试。分析的 Claudin 突变体还包括导致 HELIX 综合征的突变。结果表明,Cldn10b 和 Cldn3 链中的原聚体形成类似的反平行双链,正如 Cldn15 所提出的那样。鉴定了相互稳定的亲水和疏水 -cis- 和 trans- 界面,其中包含了细胞外片段 ECS1 和 ECS2 的新关键残基。推测柔性 ECS1 β1β2 环的疏水性聚集以及 ECS2-ECS2 反式相互作用是将四聚体构建块连接成 Claudin 聚合物的驱动力。表明 Cldn10b 和 Cldn3 共享这种聚合机制。然而,在四聚体的细胞旁中心,静电排斥可能导致孔的形成(Cldn10b),而静电吸引则导致屏障的形成(Cldn3)。结合体外数据和计算机建模,本研究通过阐明 Claudin 组装及其在 HELIX 综合征中的病理改变,提高了对细胞旁通透性调节的机制理解。

相似文献

[1]
Assembly of Tight Junction Strands: Claudin-10b and Claudin-3 Form Homo-Tetrameric Building Blocks that Polymerise in a Channel-Independent Manner.

J Mol Biol. 2020-3-4

[2]
Polar and charged extracellular residues conserved among barrier-forming claudins contribute to tight junction strand formation.

Ann N Y Acad Sci. 2017-6

[3]
Probing the cis-arrangement of prototype tight junction proteins claudin-1 and claudin-3.

Biochem J. 2015-6-15

[4]
Claudin-3 and claudin-5 protein folding and assembly into the tight junction are controlled by non-conserved residues in the transmembrane 3 (TM3) and extracellular loop 2 (ECL2) segments.

J Biol Chem. 2014-1-29

[5]
Mosaic expression of claudins in thick ascending limbs of Henle results in spatial separation of paracellular Na+ and Mg2+ transport.

Proc Natl Acad Sci U S A. 2017-1-10

[6]
Model for the architecture of claudin-based paracellular ion channels through tight junctions.

J Mol Biol. 2014-11-4

[7]
Claudin-10b cation channels in tight junction strands: Octameric-interlocked pore barrels constitute paracellular channels with low water permeability.

Comput Struct Biotechnol J. 2023-2-13

[8]
Molecular Dynamics Simulations of Claudin-10a and -10b Ion Channels: With Similar Architecture, Different Pore Linings Determine the Opposite Charge Selectivity.

Int J Mol Sci. 2024-3-9

[9]
Molecular architecture and assembly of the tight junction backbone.

Biochim Biophys Acta Biomembr. 2020-3-26

[10]
Tight junction strand formation by claudin-10 isoforms and claudin-10a/-10b chimeras.

Ann N Y Acad Sci. 2017-10

引用本文的文献

[1]
A multi-pore model of the blood-brain barrier tight junction strands recapitulates the permeability features of wild-type and mutant claudin-5.

Protein Sci. 2025-9

[2]
Biophysical basis of tight junction barrier modulation by a pan-claudin-binding molecule.

PNAS Nexus. 2025-6-6

[3]
enterotoxin-claudin pore complex: Models for structure, mechanism of pore assembly and cation permeability.

Comput Struct Biotechnol J. 2024-12-2

[4]
Ion permeability profiles of renal paracellular channel-forming claudins.

Acta Physiol (Oxf). 2025-2

[5]
Cryo-EM structures of Clostridium perfringens enterotoxin bound to its human receptor, claudin-4.

Structure. 2024-11-7

[6]
Structural and biophysical insights into targeting of claudin-4 by a synthetic antibody fragment.

Commun Biol. 2024-6-17

[7]
Computational Models of Claudin Assembly in Tight Junctions and Strand Properties.

Int J Mol Sci. 2024-3-16

[8]
Molecular Dynamics Simulations of Claudin-10a and -10b Ion Channels: With Similar Architecture, Different Pore Linings Determine the Opposite Charge Selectivity.

Int J Mol Sci. 2024-3-9

[9]
A loss of function mutation in CLDN25 causing Pelizaeus-Merzbacher-like leukodystrophy.

Hum Mol Genet. 2024-6-5

[10]
Claudin-23 reshapes epithelial tight junction architecture to regulate barrier function.

Nat Commun. 2023-10-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索