Smith Philip W, Jayee Bhumika, Hase William L
Department of Mathematics and Statistics, Texas Tech University Lubbock, Texas 79409, United States.
Department of Chemistry and Biochemistry, Texas Tech University Lubbock, Texas 79409, United States.
J Phys Chem Lett. 2020 Apr 2;11(7):2772-2774. doi: 10.1021/acs.jpclett.0c00075. Epub 2020 Mar 24.
The traditional understanding is that the Hinshelwood-Lindemann mechanism for thermal unimolecular reactions, and the resulting unimolecular rate constant versus temperature and collision frequency ω (i.e., pressure), requires the Rice-Ramsperger-Kassel-Marcus (RRKM) rate constant () to represent the unimolecular reaction of the excited molecule versus energy. RRKM theory assumes an exponential ()/(0) population for the excited molecule versus time, with decay given by RRKM microcanonical (), and agreement between experimental and Hinshelwood-Lindemann thermal kinetics is then deemed to identify the unimolecular reactant as a RRKM molecule. However, recent calculations of the Hinshelwood-Lindemann rate constant (ω,) has brought this assumption into question. It was found that a biexponential ()/(0), for intrinsic non-RRKM dynamics, gives a Hinshelwood-Lindemann (ω,) curve very similar to that of RRKM theory, which assumes exponential dynamics. The RRKM (ω,) curve was brought into agreement with the biexponential (ω,) by multiplying ω in the RRKM expression for (ω,) by an energy transfer efficiency factor . Such scaling is often done in fitting Hinshelwood-Lindemann-RRKM thermal kinetics to experiment. This agreement between the RRKM and non-RRKM curves for (ω,) was only obtained previously by scaling and fitting. In the work presented here, it is shown that if ω in the RRKM (ω,) is scaled by a factor there is analytic agreement with the non-RRKM (ω,). The expression for the value of is derived.
传统观点认为,热单分子反应的欣谢尔伍德 - 林德曼机制以及由此产生的单分子速率常数与温度和碰撞频率ω(即压力)的关系,需要用赖斯 - 拉姆施泰格 - 卡塞尔 - 马库斯(RRKM)速率常数()来表示激发分子的单分子反应与能量的关系。RRKM理论假设激发分子随时间呈指数()/(0)分布,其衰减由RRKM微正则()给出,实验与欣谢尔伍德 - 林德曼热动力学之间的一致性随后被视为将单分子反应物识别为RRKM分子。然而,最近对欣谢尔伍德 - 林德曼速率常数(ω,)的计算对此假设提出了质疑。研究发现,对于内在的非RRKM动力学,双指数()/(0)给出的欣谢尔伍德 - 林德曼(ω,)曲线与假设指数动力学的RRKM理论曲线非常相似。通过将RRKM表达式中(ω,)的ω乘以能量转移效率因子,使RRKM(ω,)曲线与双指数(ω,)一致。这种缩放通常在将欣谢尔伍德 - 林德曼 - RRKM热动力学拟合到实验中进行。RRKM和非RRKM的(ω,)曲线之间的这种一致性以前只是通过缩放和拟合得到的。在本文所展示的工作中,表明如果RRKM(ω,)中的ω按一个因子进行缩放,就会与非RRKM(ω,)有解析一致性。推导出了的值的表达式。