School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
Neural Netw. 2020 May;125:281-289. doi: 10.1016/j.neunet.2020.02.012. Epub 2020 Feb 26.
Rectified activation units make an important contribution to the success of deep neural networks in many computer vision tasks. In this paper, we propose a Parametric Deformable Exponential Linear Unit (PDELU) and theoretically verify its effectiveness for improving the convergence speed of learning procedure. By means of flexible map shape, the proposed PDELU could push the mean value of activation responses closer to zero, which ensures the steepest descent in training a deep neural network. We verify the effectiveness of the proposed method in the image classification task. Extensive experiments on three classical databases (i.e., CIFAR-10, CIFAR-100, and ImageNet-2015) indicate that the proposed method leads to higher convergence speed and better accuracy when it is embedded into different CNN architectures (i.e., NIN, ResNet, WRN, and DenseNet). Meanwhile, the proposed PDELU outperforms many existing shape-specific activation functions (i.e., Maxout, ReLU, LeakyReLU, ELU, SELU, SoftPlus, Swish) and the shape-adaptive activation functions (i.e., APL, PReLU, MPELU, FReLU).
修正激活单元对深度神经网络在许多计算机视觉任务中的成功做出了重要贡献。在本文中,我们提出了一种参数可变形指数线性单元(PDELU),并从理论上验证了它对提高学习过程收敛速度的有效性。通过灵活的映射形状,所提出的 PDELU 可以将激活响应的平均值推近零,从而确保在训练深度神经网络时能够进行最快的下降。我们在图像分类任务中验证了所提出方法的有效性。在三个经典数据库(即 CIFAR-10、CIFAR-100 和 ImageNet-2015)上的广泛实验表明,当将所提出的方法嵌入到不同的 CNN 架构(即 NIN、ResNet、WRN 和 DenseNet)中时,它可以实现更高的收敛速度和更好的准确性。同时,所提出的 PDELU 优于许多现有的特定形状激活函数(即 Maxout、ReLU、LeakyReLU、ELU、SELU、SoftPlus、Swish)和形状自适应激活函数(即 APL、PReLU、MPELU、FReLU)。