Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia; and.
Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia.
J Immunol. 2020 Apr 15;204(8):2308-2315. doi: 10.4049/jimmunol.1901396. Epub 2020 Mar 9.
CRISPR/Cas9 technologies have revolutionized our understanding of gene function in complex biological settings, including T cell immunology. Current CRISPR-mediated gene editing strategies in T cells require in vitro stimulation or culture that can both preclude the study of unmanipulated naive T cells and alter subsequent differentiation. In this study, we demonstrate highly efficient gene editing within uncultured primary naive murine CD8 T cells by electroporation of recombinant Cas9/sgRNA ribonucleoprotein immediately prior to in vivo adoptive transfer. Using this approach, we generated single and double gene knockout cells within multiple mouse infection models. Strikingly, gene deletion occurred even when the transferred cells were left in a naive state, suggesting that gene deletion occurs independent of T cell activation. Finally, we demonstrate that targeted mutations can be introduced into naive CD8 T cells using CRISPR-based homology-directed repair. This protocol thus expands CRISPR-based gene editing approaches beyond models of robust T cell activation to encompass both naive T cell homeostasis and models of weak activation, such as tolerance and tumor models.
CRISPR/Cas9 技术革新了我们在复杂生物环境中对基因功能的理解,包括 T 细胞免疫学。目前,T 细胞中的 CRISPR 介导的基因编辑策略需要体外刺激或培养,这既排除了对未处理的原始 T 细胞的研究,又改变了随后的分化。在这项研究中,我们通过在体内过继转移前立即电穿孔重组 Cas9/sgRNA 核糖核蛋白,在未培养的原始小鼠 CD8 T 细胞中实现了高效的基因编辑。使用这种方法,我们在多个小鼠感染模型中生成了单基因和双基因敲除细胞。引人注目的是,即使转移的细胞处于原始状态,基因缺失也会发生,这表明基因缺失发生在 T 细胞激活之外。最后,我们证明可以使用基于 CRISPR 的同源定向修复将靶向突变引入原始 CD8 T 细胞。因此,该方案将基于 CRISPR 的基因编辑方法扩展到强大的 T 细胞激活模型之外,包括原始 T 细胞稳态和弱激活模型,如耐受和肿瘤模型。