Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
Acc Chem Res. 2020 May 19;53(5):1024-1033. doi: 10.1021/acs.accounts.9b00624. Epub 2020 Mar 11.
Photocatalytic ozonation (light/O/photocatalyst), an independent advanced oxidation process (AOP) proposed in 1996, has demonstrated over the past two decades its robust oxidation capacity and potential for practical wastewater treatment using sunlight and air (source of ozone). However, its development is restricted by two main issues: (i) a lack of breakthrough catalysts working under visible light (42-43% of sunlight in energy) as well as ambiguous property-activity relationships and (ii) unclear fundamental reasons underlying its high yield of hydroxyl radicals (OH). In this Account, we summarize our substantial contributions to solving these issues, including (i) new-generation graphitic carbon nitride (g-CN) catalysts with excellent performance for photocatalytic ozonation under visible light, (ii) mechanisms of charge carrier transfer and reactive oxygen species (ROS) evolution, (iii) property-activity relationships, and (iv) chemical and working stabilities of g-CN catalysts. On this basis, the principles/directions for future catalyst design/optimization are discussed, and a new concept of integrating solar photocatalytic ozonation with catalytic ozonation in one plant for continuous treatment of wastewater regardless of sunlight availability is proposed.The story starts from our finding that bulk/nanosheet/nanoporous g-CN triggers a strong synergy between visible light (vis) and ozone, causing efficient mineralization of a wide variety of organic pollutants. Taking bulk g-CN as an example, photocatalytic ozonation (vis/O/g-CN) causes the mineralization of oxalic acid (a model pollutant) at a rate 95.8 times higher than the sum of photocatalytic oxidation (vis/O/g-CN) and ozonation. To unravel this synergism, we developed a method based on in situ electron paramagnetic resonance (EPR) spectroscopy coupled with an online spin trapping technique for monitoring under realistic aqueous conditions the generation and transfer of photoinduced charge carriers and their reaction with dissolved O/O to form ROS. The presence of only 2.1 mol % O in the inlet O gas stream can trap 1-2 times more conduction band electrons than pure O and shifts the reaction pathway from inefficient three-electron reduction of O (O → O → HO → HO → OH) to more efficient one-electron reduction of O (O → O → HO → OH), thereby increasing the yield of OH by a factor of 17. Next, we confirmed band structure as a decisive factor for catalytic performance and established a new concept for resolving this relationship, involving "the number of reactive charge carriers". An optimum balance between the number and reducing ability of photoinduced electrons, which depends on the interplay between the band gap and the conduction band edge potential, is a key property for highly active g-CN catalysts. Furthermore, we demonstrated that g-CN is chemically stable toward O and O but that OH can tear and oxidize its heptazine units to form cyameluric acid and further release nitrates into the aqueous environment. Fortunately, OH usually attacks organic pollutants in wastewater in preference to g-CN, thus preserving the working stability of g-CN and the steady operation of photocatalytic ozonation. This AOP, which serves as an in situ OH manufacturer, would be of interest to a broad chemistry world since OH radicals are active species not only for environmental applications but also for organic synthesis, polymerization, zeolite synthesis, and protein footprinting.
光催化臭氧氧化(光/O/光催化剂)作为一种独立的高级氧化工艺(AOP)于 1996 年提出,在过去的二十年中,它已经展示了其强大的氧化能力,并具有利用阳光和空气(臭氧来源)实际处理废水的潜力。然而,其发展受到两个主要问题的限制:(i)缺乏在可见光下工作的突破性催化剂(太阳光的 42-43%为可见光),以及不明确的性能-活性关系;(ii)其羟基自由基(OH)高生成率的根本原因不清楚。在本账目中,我们总结了我们在解决这些问题方面的重要贡献,包括:(i)具有优异可见光下光催化臭氧氧化性能的新一代石墨相氮化碳(g-CN)催化剂;(ii)载流子转移和活性氧物种(ROS)演化的机制;(iii)性能-活性关系;(iv)g-CN 催化剂的化学和工作稳定性。在此基础上,讨论了未来催化剂设计/优化的原则/方向,并提出了将太阳能光催化臭氧氧化与催化臭氧氧化在一个工厂中集成的新概念,以便在不考虑太阳光可用性的情况下连续处理废水。这个故事从我们的发现开始,块状/纳米片/纳米多孔 g-CN 在可见光(vis)和臭氧之间引发了强烈的协同作用,导致各种有机污染物的有效矿化。以块状 g-CN 为例,光催化臭氧氧化(vis/O/g-CN)导致草酸(一种模型污染物)的矿化速率比光催化氧化(vis/O/g-CN)和臭氧氧化的总和高 95.8 倍。为了解开这种协同作用,我们开发了一种基于原位电子顺磁共振(EPR)光谱与在线自旋捕获技术相结合的方法,用于在实际水相条件下监测光诱导载流子的生成和转移及其与溶解的 O/O 反应生成 ROS。在入口 O 气流中仅存在 2.1mol%的 O 就可以捕获比纯 O 多 1-2 倍的传导带电子,并将反应途径从效率低下的三电子还原 O(O→O→HO→HO→OH)转变为更有效的单电子还原 O(O→O→HO→OH),从而将 OH 的生成量提高 17 倍。接下来,我们证实了能带结构是催化性能的决定性因素,并建立了一个新的概念来解决这种关系,涉及“反应性电荷载流子的数量”。在高度活性的 g-CN 催化剂中,光诱导电子的数量和还原能力之间的最佳平衡取决于能带隙和导带边缘电位之间的相互作用,这是一个关键的性质。此外,我们证明 g-CN 对 O 和 O 具有化学稳定性,但 OH 可以撕裂并氧化其六嗪单元,形成三聚氰胺酸,并进一步将硝酸盐释放到水相环境中。幸运的是,OH 通常优先攻击废水中的有机污染物,而不是 g-CN,从而保持 g-CN 的工作稳定性和光催化臭氧氧化的稳定运行。这个 AOP 作为原位 OH 制造机,将引起广泛的化学界的兴趣,因为 OH 自由基不仅是环境应用的活性物质,也是有机合成、聚合、沸石合成和蛋白质足迹的活性物质。