Chen You, Lehmann Christoph U, Hatch Leon D, Schremp Emma, Malin Bradley A, France Daniel J
Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States.
Department of Electrical Engineering and Computer Science, School of Engineering, Vanderbilt University, Nashville, Tennessee, United States.
Methods Inf Med. 2019 Nov;58(4-05):109-123. doi: 10.1055/s-0040-1702237. Epub 2020 Mar 13.
In the neonatal intensive care unit (NICU), predefined acuity-based team care models are restricted to core roles and neglect interactions with providers outside of the team, such as interactions that transpire via electronic health record (EHR) systems. These unaccounted interactions may be related to the efficiency of resource allocation, information flow, communication, and thus impact patient outcomes. This study applied network analysis methods to EHR audit logs to model the interactions of providers beyond their core roles to better understand the interaction network patterns of acuity-based teams and relationships of the network structures with postsurgical length of stay (PSLOS).
The study used the EHR log data of surgical neonates from a large academic medical center. The study included 104 surgical neonates, for whom 9,206 unique actions were performed by 457 providers in their EHRs. We applied network analysis methods to model EHR provider interaction networks of acuity-based teams in NICU postoperative care. We partitioned each EHR network into three subnetworks based on interaction types: (1) interactions between known core providers who were documented in scheduling records (core subnetwork); (2) interactions between core and noncore providers (extended subnetwork); and (3) interactions between noncore providers (extended subnetwork). For each core subnetwork, we assessed its capability to replicate predefined core-provider relations as documented in scheduling records. We further compared each EHR network, as well as its subnetworks, using standard network measures to determine its differences in network topologies. We conducted a case study to learn provider interaction networks taking care of 15 neonates who underwent gastrostomy tube placement surgery from EHR log data and measure the effectiveness of the interaction networks on PSLOS by the proportional-odds model.
The provider networks of four acuity-based teams (two high and two low acuity), along with their subnetworks, were discovered. We found that beyond capturing the predefined core-provider relations, EHR audit logs can also learn a large number of relations between core and noncore providers or among noncore providers. Providers in the core subnetwork exhibited a greater number of connections with each other than with providers in the extended subnetworks. Many more providers in the core subnetwork serve as a hub than those in the other types of subnetworks. We also found that high-acuity teams exhibited more complex network structures than low-acuity teams, with high-acuity team generating 6,416 interactions between 407 providers compared with 931 interactions between 124 providers, respectively. In addition, we discovered that high-acuity and low-acuity teams shared more than 33 and 25% of providers with each other, respectively, but exhibited different collaborative structures demonstrating that NICU providers shift across different acuity teams and exhibit different network characteristics. Results of case study show that providers, whose patients had lower PSLOS, tended to disperse patient-related information to more colleagues within their network than those who treated higher PSLOS patients ( = 0.03).
Network analysis can be applied to EHR log data to model acuity-based NICU teams capturing interactions between providers within the predesigned core team as well as those outside of the core team. In the NICU, dissemination of information may be linked to reduced PSLOS. EHR log data provide an efficient, accessible, and research-friendly way to study provider interaction networks. Findings should guide improvements in the EHR system design to facilitate effective interactions between providers.
在新生儿重症监护病房(NICU)中,基于预定义 acuity 的团队护理模式仅限于核心角色,而忽视了与团队之外的提供者之间的互动,例如通过电子健康记录(EHR)系统发生的互动。这些未被考虑的互动可能与资源分配效率、信息流、沟通有关,从而影响患者的治疗结果。本研究将网络分析方法应用于 EHR 审计日志,以对超出核心角色的提供者之间的互动进行建模,从而更好地理解基于 acuity 的团队的互动网络模式以及网络结构与术后住院时间(PSLOS)的关系。
本研究使用了一家大型学术医疗中心的手术新生儿的 EHR 日志数据。该研究纳入了 104 名手术新生儿,457 名提供者在其 EHR 中对这些新生儿进行了 9206 次独特操作。我们应用网络分析方法对 NICU 术后护理中基于 acuity 的团队的 EHR 提供者互动网络进行建模。我们根据互动类型将每个 EHR 网络划分为三个子网:(1)调度记录中记录的已知核心提供者之间的互动(核心子网);(2)核心提供者与非核心提供者之间的互动(扩展子网);(3)非核心提供者之间的互动(扩展子网)。对于每个核心子网,我们评估其复制调度记录中记录的预定义核心提供者关系的能力。我们进一步使用标准网络度量比较每个 EHR 网络及其子网,以确定其网络拓扑结构的差异。我们进行了一项案例研究,从 EHR 日志数据中了解照顾接受胃造口管置入手术的 15 名新生儿的提供者互动网络,并通过比例优势模型测量互动网络对 PSLOS 的有效性。
发现了四个基于 acuity 的团队(两个高 acuity 和两个低 acuity)的提供者网络及其子网。我们发现,除了捕捉预定义的核心提供者关系外,EHR 审计日志还可以了解核心提供者与非核心提供者之间或非核心提供者之间的大量关系。核心子网中的提供者彼此之间的连接数量比与扩展子网中的提供者之间的连接数量更多。核心子网中担任枢纽的提供者比其他类型子网中的提供者更多。我们还发现,高 acuity 团队的网络结构比低 acuity 团队更复杂,高 acuity 团队在 407 名提供者之间产生了 6416 次互动,而低 acuity 团队在 124 名提供者之间产生了 931 次互动。此外,我们发现高 acuity 和低 acuity 团队分别有超过 33%和 25%的提供者相互共享,但表现出不同的协作结构,这表明 NICU 的提供者在不同 acuity 团队之间转移,并表现出不同的网络特征。案例研究结果表明,与治疗 PSLOS 较高的患者的提供者相比,其患者 PSLOS 较低的提供者倾向于将与患者相关的信息分散给其网络中的更多同事(P = 0.03)。
网络分析可应用于 EHR 日志数据,以对基于 acuity 的 NICU 团队进行建模,捕捉预先设计的核心团队内部以及核心团队之外的提供者之间的互动。在 NICU中,信息传播可能与降低 PSLOS 有关。EHR 日志数据为研究提供者互动网络提供了一种高效、可访问且有利于研究的方式。研究结果应指导 EHR 系统设计的改进,以促进提供者之间的有效互动。