Center of Excellence in Environmental Chemistry and Engineering, Institute for Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Belgrade 11000, Serbia.
Centre for Theoretical Chemistry and Physics (CTCP), The New Zealand Institute for Advanced Study (NZIAS), Massey University Auckland, Private Bag 102904, North Shore City, 0745 Auckland, New Zealand.
J Inorg Biochem. 2020 May;206:111049. doi: 10.1016/j.jinorgbio.2020.111049. Epub 2020 Feb 25.
The potential energy surfaces of the HS binding to iron-porphyrin (FeP) with the imidazole (Im) ligand via intersystem crossings are investigated by using density functional theory. The minimum energy intersystem crossing point (MEISCP) between the quintet and triplet states (MEISCP) for the Fe(II)P(Im)-HS complex is located at a Fe-S distance of 3.39 Å with only 1.1 kcal/mol above the quintet state minimum. The second spin-crossover point, where a change from the triplet to the singlet state occurs, comes at a much shorter Fe-S distance of 2.79 Å, and the MEISCP is located at 3.7 kcal/mol above the triplet state minimum. The nature of the chemical bonding along the Fe-S reaction coordinate from the ground state singlet to the quintet state along the path to the separated species is analyzed. An inspection of the vibrational modes reveals that the largest contribution to the triplet-quintet transition around the quintet and triplet state minimum comes from the symmetric shrinking of the pyrrole units of the porphyrin ring, indicating that the related reaction coordinate plays a main role in the intersystem crossing. The fully optimized structures of the Fe(II)P(Im)-HS complex corresponding to three different spin multiplicities (M = 1, 3, 5) are characterized by a bent Fe-H-S conformation. The binding of the hydrosulfide anion to Fe(II)P(Im) in the quintet state induces a 0.2 Å displacement of the Fe atom out of the nitrogen porphyrin (N) plane. The fully optimized structure of the ground state of Fe(II)P(Im)-HS agrees well with experimental data for the corresponding heme models.
通过使用密度泛函理论,研究了 HS 通过体系间交叉结合到带有咪唑 (Im) 配体的铁卟啉 (FeP) 上的势能面。Fe(II)P(Im)-HS 配合物中 quintet 和 triplet 态之间的最小能量体系间交叉点 (MEISCP) 位于 Fe-S 距离为 3.39Å,仅比 quintet 态最低点高 1.1 kcal/mol。第二个自旋交叉点,即从 triplet 态到 singlet 态的转变,发生在 Fe-S 距离更短的 2.79Å,MEISCP 位于 triplet 态最低点上方 3.7 kcal/mol。沿着从基态 singlet 到 quintet 态的 Fe-S 反应坐标,分析了化学键的性质,直到分离物种。对振动模式的检查表明,在 quintet 和 triplet 态最低点周围,三重态-五重态跃迁的最大贡献来自卟啉环吡咯单元的对称收缩,表明相关反应坐标在体系间交叉中起着主要作用。对应于三个不同自旋多重性 (M = 1、3、5) 的 Fe(II)P(Im)-HS 配合物的完全优化结构的特征是 Fe-H-S 弯曲构象。在 quintet 态下,氢硫化物阴离子与 Fe(II)P(Im) 的结合导致 Fe 原子从氮卟啉 (N) 平面向外位移 0.2Å。Fe(II)P(Im)-HS 基态的完全优化结构与相应血红素模型的实验数据非常吻合。