State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China.
State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China.
Water Res. 2020 May 15;175:115685. doi: 10.1016/j.watres.2020.115685. Epub 2020 Mar 5.
Understanding subsurface transport of per- and polyfluoroalkyl substances (PFASs) is of critical importance for the benign use and risk management of PFASs. As one of the most commonly found PFASs, perfluorooctanoic acid (PFOA) is used as a representative PFAS and water-saturated column experiments were conducted to investigate the effect of Al/Fe oxyhydroxide coating and ionic strength on its transport at an environmentally relevant PFOA concentration (6.8 μg L). Our results showed a clear increase in PFOA retardation in Al/Fe oxyhydroxide coated sand (retardation factor: Al: 1.87-5.58, Fe: 1.28-4.05) than those in uncoated sand (1.00-1.05), due to the stronger electrostatic attraction between anionic PFOA and Al/Fe oxyhydroxide coated sand surface. Notably, Al oxyhydroxide have a more profound effect on PFOA retention and retardation than Fe oxyhydroxide. Besides, higher ionic strength significantly inhabited PFOA retention and retardation in positively charged sand, and the considerable retention of PFOA (∼90%) in deionized water than those in 1.5 mM and 30.0 mM NaCl (<10%) clearly proves the role of competitive adsorption of Cl on PFOA transport in positively charged sand. In contrast, higher ionic strength (0 mM-30 mM NaCl) slightly increased PFOA retardation in negatively charged sand, illustrating the dominance of electrostatic interaction. Our findings advance current knowledge to understand PFOA transport in natural media with different surface charge property under environmental PFOA concentrations.
理解全氟和多氟烷基物质 (PFASs) 的地下迁移对于 PFASs 的良性使用和风险管理至关重要。作为最常见的 PFAS 之一,全氟辛酸 (PFOA) 被用作代表性的 PFAS,进行了水饱和柱实验以研究 Al/Fe 水合氧化物涂层和离子强度对环境相关浓度(6.8μg L)下其迁移的影响。我们的结果表明,与未涂层砂(1.00-1.05)相比,Al/Fe 水合氧化物涂层砂中 PFOA 的阻滞明显增加(阻滞因子:Al:1.87-5.58,Fe:1.28-4.05),这是由于阴离子 PFOA 和 Al/Fe 水合氧化物涂层砂表面之间的静电引力更强。值得注意的是,Al 水合氧化物对 PFOA 的保留和阻滞的影响比 Fe 水合氧化物更深远。此外,较高的离子强度显著抑制带正电荷的砂中 PFOA 的保留和阻滞,并且 PFOA 在去离子水中的相当大保留(约 90%)比在 1.5mM 和 30.0mM NaCl 中(<10%)清楚地证明了 Cl 在带正电荷的砂中对 PFOA 迁移的竞争吸附的作用。相比之下,较高的离子强度(0mM-30mM NaCl)略微增加了带负电荷的砂中 PFOA 的阻滞,说明静电相互作用占主导地位。我们的研究结果推进了当前的知识,以了解在环境 PFOA 浓度下具有不同表面电荷特性的天然介质中 PFOA 的迁移。