Suppr超能文献

基于模糊认知图建模的能源转型支撑的循环生物经济,实现可持续低碳环境。

Circular bio-economy via energy transition supported by Fuzzy Cognitive Map modeling towards sustainable low-carbon environment.

机构信息

University of Thessaly, Department of Computer Science and Telecommunications, Lamia, Greece.

University of Western Macedonia, Department of Chemical Engineering, Kozani, Greece.

出版信息

Sci Total Environ. 2020 Jun 15;721:137754. doi: 10.1016/j.scitotenv.2020.137754. Epub 2020 Mar 5.

Abstract

Several energy transition plans attempt to establish low-carbon practices towards a circular bio-economy in order to reduce greenhouse gas emissions. However, most actions only try to assuage the impacts of climate change without improving the resource flows generated by human activities. In this paper, we propose a semi-quantitative assessment of the impacts of biowaste-based energy transition by engaging all relevant social stakeholders' evaluation in the strategic plan. This holistic approach models a Decision Support System (DSS) to effectively evaluate the interplay of local and sectoral low-carbon actions. Regional energy alliances and stakeholders are used for participatory modeling to promote the buildup of the learning base of this DSS. The core pillar of the DSS involves the application of advanced features of soft computing for the development of a Fuzzy Cognitive Map (FCM) that elicits the inter-causalities of the critical factors affecting the energy transitions towards bio-economy options. The concepts participating in the map are established by experts, and their interrelations via a learning process that utilizes survey statistics. The strands of research include scenarios to highlight the effect of energy provision to urbanization and the increase of urban actors (social, technological, political) in influencing the decision making related to low-carbon policies. Particularly, we study a use case of a Greek region that, despite its munificent agricultural production, also disclosures a stimulated manufacturing economy sector. The proposed decision making tool uses analytics and optimization algorithms to guide competent authorities and decision makers to sustainable energy transitioning towards decarbonization.

摘要

有几个能源转型计划试图建立低碳实践,以实现循环生物经济,从而减少温室气体排放。然而,大多数行动只是试图减轻气候变化的影响,而没有改善人类活动产生的资源流动。在本文中,我们通过让所有相关社会利益相关者参与战略规划来对基于生物废物的能源转型的影响进行半定量评估。这种整体方法构建了一个决策支持系统(DSS)模型,以有效地评估本地和部门低碳行动的相互作用。区域能源联盟和利益相关者被用于参与式建模,以促进该 DSS 的学习基础的建立。DSS 的核心支柱涉及软计算的高级功能的应用,以开发一个模糊认知图(FCM),该图引出影响向生物经济选择的能源转型的关键因素的因果关系。参与映射的概念由专家建立,其通过利用调查统计数据的学习过程来建立相互关系。研究的内容包括突出能源供应对城市化的影响的情景以及增加城市参与者(社会、技术、政治)在影响与低碳政策相关的决策方面的作用。特别是,我们研究了希腊一个地区的案例,该地区尽管农业生产丰富,但也披露了一个刺激制造业经济部门。所提出的决策工具使用分析和优化算法来指导主管当局和决策者实现可持续的能源转型,以实现脱碳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验