Suppr超能文献

食虫植物茅膏菜的猎物和根系养分吸收决定了其光合作用的生物化学和叶肉扩散限制。

Biochemical and mesophyll diffusional limits to photosynthesis are determined by prey and root nutrient uptake in the carnivorous pitcher plant Nepenthes × ventrata.

机构信息

Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain.

Department of Biophysics, Centre of Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů, CZ, Czech Republic.

出版信息

Ann Bot. 2020 Jun 19;126(1):25-37. doi: 10.1093/aob/mcaa041.

Abstract

BACKGROUND AND AIMS

Carnivorous plants can enhance photosynthetic efficiency in response to prey nutrient uptake, but the underlying mechanisms of increased photosynthesis are largely unknown. Here we investigated photosynthesis in the pitcher plant Nepenthes × ventrata in response to different prey-derived and root mineral nutrition to reveal photosynthetic constrains.

METHODS

Nutrient-stressed plants were irrigated with full inorganic solution or fed with four different insects: wasps, ants, beetles or flies. Full dissection of photosynthetic traits was achieved by means of gas exchange, chlorophyll fluorescence and immunodetection of photosynthesis-related proteins. Leaf biochemical and anatomical parameters together with mineral composition, nitrogen and carbon isotopic discrimination of leaves and insects were also analysed.

KEY RESULTS

Mesophyll diffusion was the major photosynthetic limitation for nutrient-stressed Nepenthes × ventrata, while biochemistry was the major photosynthetic limitation after nutrient application. The better nutrient status of insect-fed and root-fertilized treatments increased chlorophyll, pigment-protein complexes and Rubisco content. As a result, both photochemical and carboxylation potential were enhanced, increasing carbon assimilation. Different nutrient application affected growth, and root-fertilized treatment led to the investment of more biomass in leaves instead of pitchers.

CONCLUSIONS

The study resolved a 35-year-old hypothesis that carnivorous plants increase photosynthetic assimilation via the investment of prey-derived nitrogen in the photosynthetic apparatus. The equilibrium between biochemical and mesophyll limitations of photosynthesis is strongly affected by the nutrient treatment.

摘要

背景与目的

肉食性植物可以通过吸收猎物的营养来提高光合作用效率,但增加光合作用的潜在机制在很大程度上仍不清楚。本研究旨在调查食虫植物猪笼草(Nepenthes × ventrata)对不同来源的猎物和根系矿质营养的响应,以揭示光合作用的限制因素。

方法

通过用全无机溶液灌溉或投喂黄蜂、蚂蚁、甲虫或苍蝇四种不同的昆虫,对受胁迫的植物进行处理。通过气体交换、叶绿素荧光和与光合作用相关蛋白的免疫检测,实现了对光合作用特性的全面解析。此外,还分析了叶片生化和解剖参数以及叶片和昆虫的矿质组成、氮和碳同位素的区分。

主要结果

对于受胁迫的猪笼草,叶肉扩散是光合作用的主要限制因素,而在养分施加后,生物化学是光合作用的主要限制因素。昆虫喂养和根部施肥处理的营养状况较好,增加了叶绿素、色素-蛋白复合物和 Rubisco 含量。因此,光化学和羧化潜力都得到了增强,从而提高了碳同化。不同的养分处理影响了植物的生长,根部施肥处理导致更多的生物量投资于叶片而不是瓶叶。

结论

该研究解决了一个 35 年的假说,即肉食性植物通过将猎物衍生的氮投入光合作用器官来增加光合作用的同化。光合作用的生物化学和叶肉限制之间的平衡受到养分处理的强烈影响。

相似文献

2
Feeding enhances photosynthetic efficiency in the carnivorous pitcher plant Nepenthes talangensis.
Ann Bot. 2009 Aug;104(2):307-14. doi: 10.1093/aob/mcp121. Epub 2009 May 19.
4
Carnivorous syndrome in Asian pitcher plants of the genus Nepenthes.
Ann Bot. 2007 Sep;100(3):527-36. doi: 10.1093/aob/mcm145. Epub 2007 Jul 30.
5
Feeding on prey increases photosynthetic efficiency in the carnivorous sundew Drosera capensis.
Ann Bot. 2014 Jan;113(1):69-78. doi: 10.1093/aob/mct254. Epub 2013 Nov 7.
6
Recent ecophysiological, biochemical and evolutional insights into plant carnivory.
Ann Bot. 2021 Aug 26;128(3):241-259. doi: 10.1093/aob/mcab071.
9
Impaired leaf CO2 diffusion mediates Cd-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata.
Plant Physiol Biochem. 2013 Dec;73:70-6. doi: 10.1016/j.plaphy.2013.09.008. Epub 2013 Sep 18.

引用本文的文献

2
Subgenome dominance shapes novel gene evolution in the decaploid pitcher plant Nepenthes gracilis.
Nat Plants. 2023 Dec;9(12):2000-2015. doi: 10.1038/s41477-023-01562-2. Epub 2023 Nov 23.
3
Singular adaptations in the carbon assimilation mechanism of the polyextremophile cyanobacterium Chroococcidiopsis thermalis.
Photosynth Res. 2023 May;156(2):231-245. doi: 10.1007/s11120-023-01008-y. Epub 2023 Mar 20.
4
Correlative adaptation between Rubisco and CO-concentrating mechanisms in seagrasses.
Nat Plants. 2022 Jun;8(6):706-716. doi: 10.1038/s41477-022-01171-5. Epub 2022 Jun 20.

本文引用的文献

1
Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake.
New Phytol. 2002 Jul;155(1):89-100. doi: 10.1046/j.1469-8137.2002.00441.x.
2
Coordination between leaf CO diffusion and Rubisco properties allows maximizing photosynthetic efficiency in Limonium species.
Plant Cell Environ. 2017 Oct;40(10):2081-2094. doi: 10.1111/pce.13004. Epub 2017 Aug 7.
7
Surveying Rubisco Diversity and Temperature Response to Improve Crop Photosynthetic Efficiency.
Plant Physiol. 2016 Oct;172(2):707-717. doi: 10.1104/pp.16.00750. Epub 2016 Jun 24.
8
Rubisco Catalytic Properties and Temperature Response in Crops.
Plant Physiol. 2016 Aug;171(4):2549-61. doi: 10.1104/pp.16.01846. Epub 2016 Jun 21.
9
A carnivorous sundew plant prefers protein over chitin as a source of nitrogen from its traps.
Plant Physiol Biochem. 2016 Jul;104:11-6. doi: 10.1016/j.plaphy.2016.03.008. Epub 2016 Mar 5.
10
Growth and efficiency of nutrient removal by Salix jiangsuensis J172 for phytoremediation of urban wastewater.
Environ Sci Pollut Res Int. 2016 Feb;23(3):2715-23. doi: 10.1007/s11356-015-5508-1. Epub 2015 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验