Cheng Yuwen, Song Yan, Zhang Yumin
School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai, 264209, P. R. China.
National Key Laboratory of Science and Technology for National Defence on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China.
Phys Chem Chem Phys. 2020 Mar 25;22(12):6772-6782. doi: 10.1039/d0cp00319k.
Graphitic carbon nitrides (CNs) are potential candidate materials for the electro-catalytic industry due to their unique physical and chemical properties. However, to date, a full understanding of the electro-catalytic properties of CNs is still lacking. Herein, by using density functional theory calculations, we systematically investigate the catalytic performances in the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), N2 reduction reaction (NRR), and CO2 reduction reaction (CO2RR) of monolayer graphitic carbon nitrides (C1-xNx), C3N (x = 1/4), C2N (x = 1/3), and g-C3N4 (x = 4/7). We also evaluated the NRR activity of B doped C1-xNx, and the CO2RR activity of Cu and Pd modified C1-xNx. The cohesive energy and ab initio molecular dynamics (AIMD) results show that C3N, C2N, and g-C3N4 are stable at room temperature. The C3N-C1 site is predicted to deliver the best HER catalytic performance with a reaction Gibbs free energy (ΔGH*) of -0.03 eV (close to the ideal value (0 eV)). Among the studied C1-xNx materials, the C3N-C2 site is predicted to possess a favorable ηOER of 0.82 V for OER. Pure C3N, C2N, and g-C3N4 are not suitable for NRR and CO2RR. Due to the strong hybridization between the N 2p orbital and the B 2p orbital, the NRR performances of B doped BN-C2N, BN-C3N, and BN-g-C3N4 are greatly enhanced, with corresponding overpotential ηNRR of 0.57 V, 0.70 V, and 0.72 V, respectively. The transition metals Cu and Pd can enhance the CO2RR activity of C3N, C2N, and g-C3N4. The limiting potentials UL of pure C3N, C2N, and g-C3N4 are 0.96 V, 0.86 V, and 2.37 V, respectively, while these values are 0.63 V, 0.68 V, and 0.77 V with Cu or Pd modification. This work provides deep understanding of the catalytic properties of monolayer C1-xNx and guidance for synthesizing higher activity catalysts in the future.
石墨相氮化碳(CNs)因其独特的物理和化学性质,是电催化行业潜在的候选材料。然而,迄今为止,人们对CNs的电催化性质仍缺乏全面的了解。在此,我们通过密度泛函理论计算,系统地研究了单层石墨相氮化碳(C1-xNx)、C3N(x = 1/4)、C2N(x = 1/3)和g-C3N4(x = 4/7)在析氢反应(HER)、析氧反应(OER)、氮气还原反应(NRR)和二氧化碳还原反应(CO2RR)中的催化性能。我们还评估了B掺杂C1-xNx的NRR活性,以及Cu和Pd修饰C1-xNx的CO2RR活性。结合能和从头算分子动力学(AIMD)结果表明,C3N、C2N和g-C3N4在室温下是稳定的。预测C3N-C1位点具有最佳的HER催化性能,反应吉布斯自由能(ΔGH*)为-0.03 eV(接近理想值(0 eV))。在所研究的C1-xNx材料中,预测C3N-C2位点对于OER具有0.82 V的良好过电位ηOER。纯C3N、C2N和g-C3N4不适合NRR和CO2RR。由于N 2p轨道和B 2p轨道之间的强杂化作用,B掺杂的BN-C2N、BN-C3N和BN-g-C3N4的NRR性能得到显著增强,相应的过电位ηNRR分别为0.57 V、0.70 V和0.72 V。过渡金属Cu和Pd可以增强C3N、C2N和g-C3N4的CO2RR活性。纯C3N、C2N和g-C3N4的极限电位UL分别为0.96 V、0.86 V和2.37 V,而经过Cu或Pd修饰后,这些值分别为0.63 V、0.68 V和0.77 V。这项工作为深入理解单层C1-xNx的催化性质以及未来合成更高活性的催化剂提供了指导。