Suppr超能文献

水合自由能的准确快速计算及其对生物分子功能的物理意义。

Accurate and rapid calculation of hydration free energy and its physical implication for biomolecular functions.

作者信息

Kinoshita Masahiro, Hayashi Tomohiko

机构信息

Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan.

Interdisciplinary Program of Biomedical Engineering, Assistive Technology, and Art and Sports Sciences, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181, Japan.

出版信息

Biophys Rev. 2020 Apr;12(2):469-480. doi: 10.1007/s12551-020-00686-5. Epub 2020 Mar 17.

Abstract

Here we review a new method for calculating a hydration free energy (HFE) of a solute and discuss its physical implication for biomolecular functions in aqueous environments. The solute hydration is decomposed into processes 1 and 2. A cavity matching the geometric characteristics of the solute at the atomic level is created in process 1. Solute-water van der Waals and electrostatic interaction potentials are incorporated in process 2. The angle-dependent integral equation theory combined with our morphometric approach is applied to process 1, and the three-dimensional reference interaction site model theory is employed for process 2. Molecular models are adopted for water. The new method is characterized by the following. Solutes with various sizes including proteins can be treated in the same manner. It is almost as accurate as the molecular dynamics simulation despite its far smaller computational burden. It enables us to handle a solute possessing a significantly large total charge without difficulty. The HFE can be decomposed into a variety of physically insightful, energetic, and entropic components. It is best suited to the elucidation of mechanisms of protein folding, pressure and cold denaturation of a protein, and different types of molecular recognition.

摘要

在此,我们回顾一种计算溶质水合自由能(HFE)的新方法,并讨论其对水环境中生物分子功能的物理意义。溶质水合作用被分解为过程1和过程2。在过程1中创建一个与溶质原子水平几何特征相匹配的空腔。在过程2中纳入溶质 - 水范德华力和静电相互作用势。将角度相关积分方程理论与我们的形态测量方法相结合应用于过程1,过程2采用三维参考相互作用位点模型理论。水采用分子模型。新方法具有以下特点。包括蛋白质在内的各种大小的溶质都可以以相同方式处理。尽管计算负担远小于分子动力学模拟,但其几乎同样准确。它使我们能够毫无困难地处理具有显著大总电荷的溶质。HFE可以分解为各种具有物理洞察力、能量和熵的组分。它最适合阐明蛋白质折叠机制、蛋白质的压力和冷变性以及不同类型的分子识别。

相似文献

1
Accurate and rapid calculation of hydration free energy and its physical implication for biomolecular functions.
Biophys Rev. 2020 Apr;12(2):469-480. doi: 10.1007/s12551-020-00686-5. Epub 2020 Mar 17.
4
A theoretical analysis on hydration thermodynamics of proteins.
J Chem Phys. 2006 Jul 14;125(2):24911. doi: 10.1063/1.2213980.
5
Computational prediction of molecular hydration entropy with hybrid scaled particle theory and free-energy perturbation method.
J Chem Theory Comput. 2015 Oct 13;11(10):4933-42. doi: 10.1021/acs.jctc.5b00325. Epub 2015 Sep 30.
7
A highly efficient hybrid method for calculating the hydration free energy of a protein.
J Comput Chem. 2016 Mar 30;37(8):712-23. doi: 10.1002/jcc.24253. Epub 2015 Nov 17.
8
On the physics of multidrug efflux through a biomolecular complex.
J Chem Phys. 2013 Nov 28;139(20):205102. doi: 10.1063/1.4832896.
9
Hydration properties of a protein at low and high pressures: Physics of pressure denaturation.
J Chem Phys. 2020 Feb 14;152(6):065103. doi: 10.1063/1.5140499.
10
Interaction-component analysis of the hydration and urea effects on cytochrome c.
J Chem Phys. 2016 Feb 28;144(8):085102. doi: 10.1063/1.4941945.

引用本文的文献

1
Physics-Based Solubility Prediction for Organic Molecules.
Chem Rev. 2025 Aug 13;125(15):7057-7098. doi: 10.1021/acs.chemrev.4c00855. Epub 2025 Jul 29.
3
Biophysical Reviews: 2020-looking back, going forward.
Biophys Rev. 2020 Dec 2;12(6):1269-1276. doi: 10.1007/s12551-020-00777-3. eCollection 2020 Dec.
4
Biophysical Reviews' national biophysical society partnership program.
Biophys Rev. 2020 Apr;12(2):187-192. doi: 10.1007/s12551-020-00693-6. Epub 2020 Apr 29.

本文引用的文献

1
How Does the Recently Discovered Peptide MIP Exhibit Much Higher Binding Affinity than an Anticancer Protein p53 for an Oncoprotein MDM2?
J Chem Inf Model. 2019 Aug 26;59(8):3533-3544. doi: 10.1021/acs.jcim.9b00226. Epub 2019 Jul 18.
4
On the molecular origin of the cooperative coil-to-globule transition of poly(N-isopropylacrylamide) in water.
Phys Chem Chem Phys. 2018 Apr 18;20(15):9997-10010. doi: 10.1039/c8cp00537k.
5
Probabilistic analysis for identifying the driving force of protein folding.
J Chem Phys. 2018 Mar 28;148(12):125101. doi: 10.1063/1.5019410.
6
A new theoretical approach to biological self-assembly.
Biophys Rev. 2013 Sep;5(3):283-293. doi: 10.1007/s12551-013-0100-8. Epub 2013 Feb 1.
7
Computational Methods for Configurational Entropy Using Internal and Cartesian Coordinates.
J Chem Theory Comput. 2016 Dec 13;12(12):5990-6000. doi: 10.1021/acs.jctc.6b00563. Epub 2016 Dec 2.
9
Finite-size effect on the charging free energy of protein in explicit solvent.
J Chem Theory Comput. 2015 Jan 13;11(1):215-23. doi: 10.1021/ct5008394.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验