Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, People's Republic of China.
Biofabrication. 2020 Apr 29;12(3):035005. doi: 10.1088/1758-5090/ab80b5.
Combining patterning coculture technique with microfluidics enables the reconstruction of complex in-vivo system to facilitate in-vitro studies on cell-cell and cell-environment interactions. However, simple and versatile approaches for patterning coculture of cells on microfluidic platforms remain lacking. In this study, a novel gravitational sedimentation-based approach is presented to achieve ultra-simple and flexible cell patterning coculture on a microfluidic platform, where multiple cell types can be patterned simultaneously to form a well-organized cell coculture. In contrast to other approaches, the proposed approach allows the rapid patterning of multiple cell types in microfluidic channels without the use of sheath flow and a prepatterned functional surface. This feature greatly simplifies the experimental setup, operation, and chip fabrication. Moreover, cell patterning can be adjusted by simply modifying the cell-loading tubing direction, thereby enabling great flexibility for the construction of different cell patterns without complicating the chip design and flow control. A series of physical and biological experiments are conducted to validate the proposed approach. This research paves a new way for building physiologically realistic in-vitro coculture models on microfluidic platforms for various applications, such as cell-cell interaction and drug screening.
将图案化共培养技术与微流控相结合,可以重建复杂的体内系统,从而便于在体外研究细胞-细胞和细胞-环境相互作用。然而,在微流控平台上对细胞进行图案化共培养的简单且通用的方法仍然缺乏。在本研究中,提出了一种新颖的基于重力沉降的方法,可在微流控平台上实现超简单且灵活的细胞图案化共培养,其中可以同时对多种细胞类型进行图案化,以形成组织良好的细胞共培养。与其他方法相比,该方法不需要鞘流和预图案化功能表面即可在微流道中快速对多种细胞类型进行图案化。这一特点大大简化了实验设置、操作和芯片制造。此外,只需修改细胞加载管的方向即可调整细胞图案化,从而可以灵活构建不同的细胞图案,而无需使芯片设计和流量控制复杂化。进行了一系列物理和生物学实验来验证所提出的方法。这项研究为在微流控平台上构建用于各种应用(如细胞-细胞相互作用和药物筛选)的生理现实体外共培养模型开辟了新途径。