Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.
Biological Optical Microscopy Platform, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.
mBio. 2020 Mar 17;11(2):e03320-19. doi: 10.1128/mBio.03320-19.
The malaria parasite traffics the virulence protein erythrocyte membrane protein 1 (EMP1) to the surface of infected red blood cells (RBCs) via membranous organelles, known as the Maurer's clefts. We developed a method for efficient enrichment of Maurer's clefts and profiled the protein composition of this trafficking organelle. We identified 13 previously uncharacterized or poorly characterized Maurer's cleft proteins. We generated transfectants expressing green fluorescent protein (GFP) fusions of 7 proteins and confirmed their Maurer's cleft location. Using co-immunoprecipitation and mass spectrometry, we generated an interaction map of proteins at the Maurer's clefts. We identified two key clusters that may function in the loading and unloading of EMP1 into and out of the Maurer's clefts. We focus on a putative EMP1 loading complex that includes the protein GEXP07/CX3CL1-binding protein 2 (CBP2). Disruption of GEXP07 causes Maurer's cleft fragmentation, aberrant knobs, ablation of EMP1 surface expression, and loss of the EMP1-mediated adhesion. ΔGEXP07 parasites have a growth advantage compared to wild-type parasites, and the infected RBCs are more deformable and more osmotically fragile. The trafficking of the virulence antigen EMP1 and its presentation at the knob structures at the surface of parasite-infected RBCs are central to severe adhesion-related pathologies such as cerebral and placental malaria. This work adds to our understanding of how PfEMP1 is trafficked to the RBC membrane by defining the protein-protein interaction networks that function at the Maurer's clefts controlling PfEMP1 loading and unloading. We characterize a protein needed for virulence protein trafficking and provide new insights into the mechanisms for host cell remodeling, parasite survival within the host, and virulence.
疟原虫通过膜状细胞器将毒力蛋白红细胞膜蛋白 1(EMP1)运输到感染的红细胞(RBC)表面,这些细胞器被称为 Maurer 氏裂隙。我们开发了一种从 Maurer 氏裂隙中高效富集蛋白的方法,并对该运输细胞器的蛋白质组成进行了分析。我们鉴定了 13 种以前未被描述或描述较少的 Maurer 氏裂隙蛋白。我们生成了 7 种蛋白的绿色荧光蛋白(GFP)融合转染子,并证实了它们在 Maurer 氏裂隙中的位置。通过免疫共沉淀和质谱分析,我们生成了 Maurer 氏裂隙中蛋白质的相互作用图谱。我们鉴定了两个可能在 EMP1 加载和卸载到 Maurer 氏裂隙中的关键簇。我们重点研究了一个可能的 EMP1 加载复合物,该复合物包括蛋白 GEXP07/CX3CL1 结合蛋白 2(CBP2)。GEXP07 的缺失导致 Maurer 氏裂隙碎片化、异常的 knob、EMP1 表面表达缺失以及 EMP1 介导的黏附丧失。与野生型寄生虫相比,ΔGEXP07 寄生虫具有生长优势,并且感染的 RBC 更具变形性和更易渗透脆性。毒力抗原 EMP1 的运输及其在寄生虫感染 RBC 表面 knob 结构上的呈现,是与严重黏附相关的病理学(如脑型疟疾和胎盘疟疾)的关键。这项工作通过定义在 Maurer 氏裂隙中控制 PfEMP1 加载和卸载的蛋白质相互作用网络,为理解 PfEMP1 如何被运输到 RBC 膜增加了我们的认识。我们描述了一个与毒力蛋白运输相关的蛋白,并为宿主细胞重塑、寄生虫在宿主内的生存和毒力的机制提供了新的见解。