Suppr超能文献

酵母端粒蛋白 Rap1 识别 G-四链体 DNA 的结构基础。

Structural basis of G-quadruplex DNA recognition by the yeast telomeric protein Rap1.

机构信息

School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.

NTU Institute of Structural Biology, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore.

出版信息

Nucleic Acids Res. 2020 May 7;48(8):4562-4571. doi: 10.1093/nar/gkaa171.

Abstract

G-quadruplexes are four-stranded nucleic acid structures involved in multiple cellular pathways including DNA replication and telomere maintenance. Such structures are formed by G-rich DNA sequences typified by telomeric DNA repeats. Whilst there is evidence for proteins that bind and regulate G-quadruplex formation, the molecular basis for this remains poorly understood. The budding yeast telomeric protein Rap1, originally identified as a transcriptional regulator functioning by recognizing double-stranded DNA binding sites, was one of the first proteins to be discovered to also bind and promote G-quadruplex formation in vitro. Here, we present the 2.4 Å resolution crystal structure of the Rap1 DNA-binding domain in complex with a G-quadruplex. Our structure not only provides a detailed insight into the structural basis for G-quadruplex recognition by a protein, but also gives a mechanistic understanding of how the same DNA-binding domain adapts to specifically recognize different DNA structures. The key observation is the DNA-recognition helix functions in a bimodal manner: In double-stranded DNA recognition one helix face makes electrostatic interactions with the major groove of DNA, whereas in G-quadruplex recognition a different helix face is used to make primarily hydrophobic interactions with the planar face of a G-tetrad.

摘要

四链体是涉及多种细胞途径的四链核酸结构,包括 DNA 复制和端粒维持。这种结构是由富含 G 的 DNA 序列形成的,其典型代表是端粒 DNA 重复序列。虽然有证据表明有结合和调节四链体形成的蛋白质,但对其分子基础仍知之甚少。芽殖酵母端粒蛋白 Rap1 最初被鉴定为一种转录调节剂,通过识别双链 DNA 结合位点发挥作用,是最早发现的能够在体外结合并促进四链体形成的蛋白质之一。在这里,我们展示了 Rap1 DNA 结合域与四链体复合物的 2.4 Å 分辨率晶体结构。我们的结构不仅提供了一个关于蛋白质识别四链体的结构基础的详细见解,而且还提供了一个关于同一 DNA 结合域如何适应特异性识别不同 DNA 结构的机制理解。关键观察是 DNA 识别螺旋以双模方式发挥作用:在双链 DNA 识别中,一个螺旋面与 DNA 的大沟形成静电相互作用,而在四链体识别中,不同的螺旋面用于与 G-四联体的平面主要形成疏水相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ceb/7192608/f1e1a90d3242/gkaa171fig1.jpg

相似文献

1
Structural basis of G-quadruplex DNA recognition by the yeast telomeric protein Rap1.
Nucleic Acids Res. 2020 May 7;48(8):4562-4571. doi: 10.1093/nar/gkaa171.
2
The DNA-binding domain of yeast Rap1 interacts with double-stranded DNA in multiple binding modes.
Biochemistry. 2014 Dec 9;53(48):7471-83. doi: 10.1021/bi501049b. Epub 2014 Nov 21.
3
The wrapping loop and Rap1 C-terminal (RCT) domain of yeast Rap1 modulate access to different DNA binding modes.
J Biol Chem. 2015 May 1;290(18):11455-66. doi: 10.1074/jbc.M115.637678. Epub 2015 Mar 24.
4
5
Promotion of parallel DNA quadruplexes by a yeast telomere binding protein: a circular dichroism study.
Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7658-62. doi: 10.1073/pnas.91.16.7658.
6
Yeast transcription co-activator Sub1 and its human homolog PC4 preferentially bind to G-quadruplex DNA.
Chem Commun (Camb). 2015 Apr 28;51(33):7242-4. doi: 10.1039/c5cc00742a.
7
The orientation of the C-terminal domain of the Saccharomyces cerevisiae Rap1 protein is determined by its binding to DNA.
Nucleic Acids Res. 2012 Apr;40(7):3197-207. doi: 10.1093/nar/gkr1166. Epub 2011 Dec 1.
8
Oligomer formation and G-quadruplex binding by purified murine Rif1 protein, a key organizer of higher-order chromatin architecture.
J Biol Chem. 2018 Mar 9;293(10):3607-3624. doi: 10.1074/jbc.RA117.000446. Epub 2018 Jan 18.
9
Insights into telomeric G-quadruplex DNA recognition by HMGB1 protein.
Nucleic Acids Res. 2019 Oct 10;47(18):9950-9966. doi: 10.1093/nar/gkz727.

引用本文的文献

1
Structural basis of G-quadruplex recognition by a camelid antibody fragment.
Nucleic Acids Res. 2025 May 22;53(10). doi: 10.1093/nar/gkaf453.
2
The DNA damage tolerance factor Rad5 and telomere replication.
Curr Genet. 2025 May 26;71(1):11. doi: 10.1007/s00294-025-01315-y.
3
Structural basis for nucleolin recognition of promoter G-quadruplex.
Science. 2025 Apr 18;388(6744):eadr1752. doi: 10.1126/science.adr1752.
4
Three- and four-stranded nucleic acid structures and their ligands.
RSC Chem Biol. 2025 Feb 19;6(4):466-491. doi: 10.1039/d4cb00287c. eCollection 2025 Apr 2.
6
Visualizing liquid-liquid phase transitions.
bioRxiv. 2024 Oct 28:2023.10.09.561572. doi: 10.1101/2023.10.09.561572.
7
A Compendium of G-Flipon Biological Functions That Have Experimental Validation.
Int J Mol Sci. 2024 Sep 25;25(19):10299. doi: 10.3390/ijms251910299.
9
Protein G-quadruplex interactions and their effects on phase transitions and protein aggregation.
Nucleic Acids Res. 2024 May 8;52(8):4702-4722. doi: 10.1093/nar/gkae229.
10
Structural Motifs at the Telomeres and Their Role in Regulatory Pathways.
Biochemistry. 2024 Apr 2;63(7):827-842. doi: 10.1021/acs.biochem.4c00023. Epub 2024 Mar 14.

本文引用的文献

1
Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36.
Nature. 2018 Jun;558(7710):465-469. doi: 10.1038/s41586-018-0209-9. Epub 2018 Jun 13.
2
Telomeres in cancer: tumour suppression and genome instability.
Nat Rev Mol Cell Biol. 2017 Mar;18(3):175-186. doi: 10.1038/nrm.2016.171. Epub 2017 Jan 18.
3
Recent advances in targeting the telomeric G-quadruplex DNA sequence with small molecules as a strategy for anticancer therapies.
Future Med Chem. 2016 Jul;8(11):1259-90. doi: 10.4155/fmc-2015-0017. Epub 2016 Jul 21.
4
Quadruplex Nucleic Acids as Novel Therapeutic Targets.
J Med Chem. 2016 Jul 14;59(13):5987-6011. doi: 10.1021/acs.jmedchem.5b01835. Epub 2016 Feb 16.
5
G-quadruplexes and their regulatory roles in biology.
Nucleic Acids Res. 2015 Oct 15;43(18):8627-37. doi: 10.1093/nar/gkv862. Epub 2015 Sep 8.
6
Insights into G-quadruplex specific recognition by the DEAH-box helicase RHAU: Solution structure of a peptide-quadruplex complex.
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9608-13. doi: 10.1073/pnas.1422605112. Epub 2015 Jul 20.
7
High-throughput sequencing of DNA G-quadruplex structures in the human genome.
Nat Biotechnol. 2015 Aug;33(8):877-81. doi: 10.1038/nbt.3295. Epub 2015 Jul 20.
8
Small-molecule quadruplex-targeted drug discovery.
Bioorg Med Chem Lett. 2014 Jun 15;24(12):2602-12. doi: 10.1016/j.bmcl.2014.04.029. Epub 2014 Apr 18.
9
DNA secondary structures: stability and function of G-quadruplex structures.
Nat Rev Genet. 2012 Nov;13(11):770-80. doi: 10.1038/nrg3296. Epub 2012 Oct 3.
10
Monomer-dimer equilibrium for the 5'-5' stacking of propeller-type parallel-stranded G-quadruplexes: NMR structural study.
Chemistry. 2012 Nov 12;18(46):14752-9. doi: 10.1002/chem.201103295. Epub 2012 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验