Puente-Díaz Luis, Spolmann Oliver, Nocetti Diego, Zura-Bravo Liliana, Lemus-Mondaca Roberto
Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 1058, Chile.
Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica 1000665, Chile.
Foods. 2020 Mar 16;9(3):343. doi: 10.3390/foods9030343.
The objective of this work was to study the influence of the drying temperature, infrared (IR) radiation assistance, and the Mylar™ film thickness during fruit purée drying by the Refractance Window™ (RW™) method. For this, a RW™ dryer layout with a regulated bath at working temperatures of 60, 75, and 90 °C, Mylar™ thicknesses of 0.19, 0.25, 0.30 mm and IR radiation of 250 W for assisting RW™ drying process was used. Experimental curves data were expressed in moisture ratio (MR) in order to obtain moisture effective diffusivities (non-assisted RW™: = 2.7-10.1 × 10 m/s and IR-assisted RW™: = 4.2-13.4 × 10 m/s) and further drying curves modeling (Page, Henderson-Pabis, Modified Henderson-Pabis, Two-Term, and Midilli-Kucuk models). The Midilli-Kucuk model obtained the best-fit quality on experimental curves regarding statistical tests applied (Coefficient of Determination (), ) and Root Mean Square Error (). Microscopical observations were carried out to study the RW™ drying conditions effect on microstructural changes of fruit purée. The main findings of this work indicated that the use of IR-assisted RW™ drying effectively accelerates the drying process, which achieved a decrease drying time around 60%. Thus, this combined RW™ process is strongly influenced by the working temperature and IR-power applied, and slightly by Mylar™ thickness.
这项工作的目的是研究干燥温度、红外(IR)辐射辅助以及在采用折射窗(RW™)方法干燥果泥过程中聚酯薄膜(Mylar™)厚度的影响。为此,使用了一种RW™干燥机布局,其带有一个可调节的浴槽,工作温度为60、75和90°C,Mylar™厚度为0.19、0.25、0.30毫米,并采用250瓦的红外辐射来辅助RW™干燥过程。实验曲线数据以水分比(MR)表示,以便获得水分有效扩散率(无红外辅助的RW™: = 2.7 - 10.1×10米²/秒,红外辅助的RW™: = 4.2 - 13.4×10米²/秒)以及进一步进行干燥曲线建模(佩奇模型、亨德森 - 帕比斯模型、修正亨德森 - 帕比斯模型、双项模型和米迪利 - 库库克模型)。就所应用的统计测试(决定系数( )、 )和均方根误差( )而言,米迪利 - 库库克模型在实验曲线上获得了最佳拟合质量。进行了微观观察以研究RW™干燥条件对果泥微观结构变化的影响。这项工作的主要发现表明,使用红外辅助的RW™干燥有效地加速了干燥过程,干燥时间减少了约60%。因此,这种组合的RW™工艺受到工作温度和所施加的红外功率的强烈影响,而受Mylar™厚度的影响较小。