Faculty of Physics, University of Vienna, VCQ, Boltzmanngasse 5, A-1090, Vienna, Austria.
Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom.
Nat Commun. 2020 Mar 19;11(1):1447. doi: 10.1038/s41467-020-15280-2.
The de Broglie wave nature of matter is a paradigmatic example of quantum physics and it has been exploited in precision measurements of forces and fundamental constants. However, matter-wave interferometry has remained an outstanding challenge for natural polypeptides, building blocks of life, which are fragile and difficult to handle. Here, we demonstrate the wave nature of gramicidin, a natural antibiotic composed of 15 amino acids. Its center of mass is delocalized over more than 20 times the molecular size in our time-domain Talbot-Lau interferometer. We compare the observed interference fringes with a model that includes both a rigorous treatment of the peptide's quantum wave nature as well as a quantum chemical assessment of its optical properties to distinguish our result from classical predictions. The realization of quantum optics with this prototypical biomolecule paves the way for quantum-assisted measurements on a large class of biologically relevant molecules.
物质的德布罗意波性质是量子物理学的典范范例,它已被用于力和基本常数的精密测量中。然而,对于生命的组成部分——天然多肽来说,物质波干涉仍然是一个悬而未决的挑战,因为它们脆弱且难以处理。在这里,我们展示了由 15 个氨基酸组成的天然抗生素——短杆菌肽的波性质。在我们的时域泰伯-劳干涉仪中,其质心的弥散范围超过分子大小的 20 多倍。我们将观察到的干涉条纹与一个模型进行了比较,该模型包括对肽的量子波性质的严格处理以及对其光学性质的量子化学评估,以将我们的结果与经典预测区分开来。用这种典型的生物分子实现量子光学为对一大类与生物学相关的分子进行量子辅助测量铺平了道路。