Suppr超能文献

再利用分子进行抗癫痫发生:错失预防癫痫的机会?

Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy?

机构信息

Mid-Atlantic Epilepsy and Sleep Center, Bethesda, Maryland.

Departments of Physiology and Cell Biology, and Brain and Cognitive Science, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

出版信息

Epilepsia. 2020 Mar;61(3):359-386. doi: 10.1111/epi.16450.

Abstract

Prevention of epilepsy is a great unmet need. Acute central nervous system (CNS) insults such as traumatic brain injury (TBI), cerebrovascular accidents (CVA), and CNS infections account for 15%-20% of all epilepsy. Following TBI and CVA, there is a latency of days to years before epilepsy develops. This allows treatment to prevent or modify postinjury epilepsy. No such treatment exists. In animal models of acquired epilepsy, a number of medications in clinical use for diverse indications have been shown to have antiepileptogenic or disease-modifying effects, including medications with excellent side effect profiles. These include atorvastatin, ceftriaxone, losartan, isoflurane, N-acetylcysteine, and the antiseizure medications levetiracetam, brivaracetam, topiramate, gabapentin, pregabalin, vigabatrin, and eslicarbazepine acetate. In addition, there are preclinical antiepileptogenic data for anakinra, rapamycin, fingolimod, and erythropoietin, although these medications have potential for more serious side effects. However, except for vigabatrin, there have been almost no translation studies to prevent or modify epilepsy using these potentially "repurposable" medications. We may be missing an opportunity to develop preventive treatment for epilepsy by not evaluating these medications clinically. One reason for the lack of translation studies is that the preclinical data for most of these medications are disparate in terms of types of injury, models within different injury type, dosing, injury-treatment initiation latencies, treatment duration, and epilepsy outcome evaluation mode and duration. This makes it difficult to compare the relative strength of antiepileptogenic evidence across the molecules, and difficult to determine which drug(s) would be the best to evaluate clinically. Furthermore, most preclinical antiepileptogenic studies lack information needed for translation, such as dose-blood level relationship, brain target engagement, and dose-response, and many use treatment parameters that cannot be applied clinically, for example, treatment initiation before or at the time of injury and dosing higher than tolerated human equivalent dosing. Here, we review animal and human antiepileptogenic evidence for these medications. We highlight the gaps in our knowledge for each molecule that need to be filled in order to consider clinical translation, and we suggest a platform of preclinical antiepileptogenesis evaluation of potentially repurposable molecules or their combinations going forward.

摘要

预防癫痫是一个巨大的未满足需求。急性中枢神经系统(CNS)损伤,如创伤性脑损伤(TBI)、脑血管意外(CVA)和 CNS 感染,占所有癫痫的 15%-20%。TBI 和 CVA 后,癫痫发作有几天到几年的潜伏期。这使得治疗可以预防或改变损伤后的癫痫。目前尚无此类治疗方法。在获得性癫痫的动物模型中,许多用于多种适应证的临床用药已被证明具有抗癫痫或疾病修饰作用,包括具有良好副作用谱的药物。这些药物包括阿托伐他汀、头孢曲松、氯沙坦、异氟烷、N-乙酰半胱氨酸和抗癫痫药物左乙拉西坦、布瓦西坦、托吡酯、加巴喷丁、普瑞巴林、vigabatrin 和 eslicarbazepine 醋酸盐。此外,还有用于白介素-1 受体拮抗剂、雷帕霉素、芬戈莫德和促红细胞生成素的临床前抗癫痫发生数据,尽管这些药物可能有更严重的副作用。然而,除了 vigabatrin 之外,几乎没有使用这些潜在的“可再利用”药物来预防或改变癫痫的翻译研究。我们可能会错过开发癫痫预防治疗的机会,因为我们没有对这些药物进行临床评估。缺乏翻译研究的一个原因是,大多数这些药物的临床前数据在损伤类型、不同损伤类型内的模型、剂量、损伤-治疗开始潜伏期、治疗持续时间以及癫痫结果评估模式和持续时间方面存在差异。这使得比较这些分子的抗癫痫发生证据的相对强度变得困难,也难以确定哪种药物(或多种药物)最适合临床评估。此外,大多数临床前抗癫痫发生研究缺乏翻译所需的信息,例如剂量-血药浓度关系、大脑靶标结合和剂量反应,并且许多研究使用无法在临床上应用的治疗参数,例如在损伤前或损伤时开始治疗以及给药剂量高于人类等效剂量耐受。在这里,我们综述了这些药物的动物和人类抗癫痫发生证据。我们强调了每个分子都需要填补的知识空白,以便考虑临床转化,并且我们建议在未来建立一个潜在可再利用分子或其组合的临床前抗癫痫发生评估平台。

相似文献

4
The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments.
Neuropharmacology. 2020 May 1;167:107605. doi: 10.1016/j.neuropharm.2019.04.011. Epub 2019 Apr 11.
5
Therapeutic Effects of Time-Limited Treatment with Brivaracetam on Posttraumatic Epilepsy after Fluid Percussion Injury in the Rat.
J Pharmacol Exp Ther. 2021 Dec;379(3):310-323. doi: 10.1124/jpet.121.000585. Epub 2021 Sep 30.
6
Combination Therapy of Gabapentin and N-Acetylcysteine Against Posttraumatic Epilepsy in Rats.
Neurochem Res. 2020 Aug;45(8):1802-1812. doi: 10.1007/s11064-020-03042-x. Epub 2020 May 5.
7
Commonalities in epileptogenic processes from different acute brain insults: Do they translate?
Epilepsia. 2018 Jan;59(1):37-66. doi: 10.1111/epi.13965. Epub 2017 Dec 15.
8
Antiepileptogenesis in humans: disappointing clinical evidence and ways to move forward.
Curr Opin Neurol. 2014 Apr;27(2):227-35. doi: 10.1097/WCO.0000000000000067.
9
Antiepileptogenesis and disease modification: Clinical and regulatory issues.
Epilepsia Open. 2021 Sep;6(3):483-492. doi: 10.1002/epi4.12526. Epub 2021 Jul 29.

引用本文的文献

1
Navigating pediatric post-stroke epilepsy: comparative assessment of treatment strategies.
Acta Neurol Belg. 2025 Aug 4. doi: 10.1007/s13760-025-02855-3.
2
Prognostic models for seizures and epilepsy after stroke, tumors and traumatic brain injury.
Clin Neurophysiol Pract. 2025 Mar 4;10:116-128. doi: 10.1016/j.cnp.2025.02.008. eCollection 2025.
4
A meta-analytic evaluation of the efficacy and safety of levetiracetam for treating myoclonic seizures.
Heliyon. 2025 Jan 23;11(3):e42244. doi: 10.1016/j.heliyon.2025.e42244. eCollection 2025 Feb 15.
6
Initial clinical evidence on biperiden as antiepileptogenic after traumatic brain injury-a randomized clinical trial.
Front Neurol. 2024 Aug 7;15:1443982. doi: 10.3389/fneur.2024.1443982. eCollection 2024.
7
New epilepsy therapies in development.
Nat Rev Drug Discov. 2024 Sep;23(9):682-708. doi: 10.1038/s41573-024-00981-w. Epub 2024 Jul 22.
8
Risk of epilepsy after traumatic brain injury: a nationwide Norwegian matched cohort study.
Front Neurol. 2024 Jun 5;15:1411692. doi: 10.3389/fneur.2024.1411692. eCollection 2024.
9
From spreading depolarization to blood-brain barrier dysfunction: navigating traumatic brain injury for novel diagnosis and therapy.
Nat Rev Neurol. 2024 Jul;20(7):408-425. doi: 10.1038/s41582-024-00973-9. Epub 2024 Jun 17.

本文引用的文献

1
Proof-of-concept that network pharmacology is effective to modify development of acquired temporal lobe epilepsy.
Neurobiol Dis. 2020 Feb;134:104664. doi: 10.1016/j.nbd.2019.104664. Epub 2019 Nov 1.
2
Preventive Antiepileptic Treatment in Tuberous Sclerosis Complex: A Long-Term, Prospective Trial.
Pediatr Neurol. 2019 Dec;101:18-25. doi: 10.1016/j.pediatrneurol.2019.07.008. Epub 2019 Jul 23.
3
Centromedian thalamic nuclei deep brain stimulation and Anakinra treatment for FIRES - Two different outcomes.
Eur J Paediatr Neurol. 2019 Sep;23(5):749-754. doi: 10.1016/j.ejpn.2019.08.001. Epub 2019 Aug 8.
4
Inflammation and reactive oxygen species as disease modifiers in epilepsy.
Neuropharmacology. 2020 May 1;167:107742. doi: 10.1016/j.neuropharm.2019.107742. Epub 2019 Aug 14.
5
Combination antioxidant therapy prevents epileptogenesis and modifies chronic epilepsy.
Redox Biol. 2019 Sep;26:101278. doi: 10.1016/j.redox.2019.101278. Epub 2019 Jul 19.
6
Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy.
Nat Rev Neurol. 2019 Aug;15(8):459-472. doi: 10.1038/s41582-019-0217-x. Epub 2019 Jul 1.
7
Therapeutic effect of Anakinra in the relapsing chronic phase of febrile infection-related epilepsy syndrome.
Epilepsia Open. 2019 Mar 27;4(2):344-350. doi: 10.1002/epi4.12317. eCollection 2019 Jun.
9
The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments.
Neuropharmacology. 2020 May 1;167:107605. doi: 10.1016/j.neuropharm.2019.04.011. Epub 2019 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验