Department of Chemistry, Acharya Jagadish Chandra Bose College, Kolkata 700 020, India.
S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700 106, India.
J Chem Phys. 2020 Mar 21;152(11):111102. doi: 10.1063/1.5144726.
Major biological polymerization processes achieve remarkable accuracy while operating out of thermodynamic equilibrium by utilizing the mechanism known as kinetic proofreading. Here, we study the interplay of the thermodynamic and kinetic aspects of proofreading by exploring the dissipation and catalytic rate, respectively, under the realistic constraint of fixed chemical potential difference. Theoretical analyses reveal no-monotonic variations of the catalytic rate and total entropy production rate (EPR), the latter quantifying the dissipation, at steady state. Applying this finding to a tRNA selection network in protein synthesis, we observe that the network tends to maximize both the EPR and catalytic rate, but not the accuracy. Simultaneously, the system tries to minimize the ratio of the EPRs due to the proofreading steps and the catalytic steps. Therefore, dissipation plays a guiding role in the optimization of the catalytic rate in the tRNA selection network of protein synthesis.
主要的生物聚合过程通过利用被称为动力学校对的机制,在热力学平衡之外实现了显著的准确性。在这里,我们通过分别研究校对的热力学和动力学方面的耗散和催化速率,在固定化学势差的实际约束下探索了校对的相互作用。理论分析表明,在稳态下,催化速率和总熵产生速率(EPR),后者量化了耗散,没有单调变化。将这一发现应用于蛋白质合成中的 tRNA 选择网络,我们观察到网络倾向于最大化 EPR 和催化速率,但不是准确性。同时,系统试图最小化由于校对步骤和催化步骤引起的 EPR 之比。因此,在蛋白质合成的 tRNA 选择网络中,耗散在催化速率的优化中起着指导作用。