Suppr超能文献

利用 ICP-MS 和 ICP-OES 技术结合化学计量学方法提高茶叶的地理来源鉴别能力。

Improved geographical origin discrimination for tea using ICP-MS and ICP-OES techniques in combination with chemometric approach.

机构信息

College of Food Science, Southwest University, Chongqing, China.

Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China.

出版信息

J Sci Food Agric. 2020 Jun;100(8):3507-3516. doi: 10.1002/jsfa.10392. Epub 2020 Apr 7.

Abstract

BACKGROUND

There is an urgent need to strengthen the testing and certification of geographically iconic foods, as well as to use discriminatory science and technology for their regulation and verification. Multi-element and stable isotope analyses were combined to provide a new chemometric approach for improving the discrimination tea samples from different geographical origins. Different stoichiometric methods [principal component analysis (PCA), hierarchical cluster analysis (HCA), partial least squares-discriminant analysis (PLS-DA), back propagation based artificial neural network (BP-ANN) and linear discriminant analysis (LDA)] were used to demonstrate this discrimination approach using Yongchuanxiuya tea samples in an experimental test.

RESULTS

Multi-element and stable isotope analyses of tea samples using inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry easily distinguished the geographical origins. However, the clustering ability of the two unsupervised learning methods (PCA and HCA) were worse compared to that of the three supervised learning methods (PLS-DA, BP-ANN and LDA). BP-ANN and LDA, with 100% recognition and prediction abilities, were found to be better than PLS-DA. Sr and Cd were the markers enabling the successful classification of tea samples according to their geographical origins. Under the validation by 'blind' dataset, the prediction accuracies of the BP-ANN and LDA methods were all greater than 90%. The LDA method showed the best performance, with an accuracy of 100%.

CONCLUSION

In summary, determination of mineral elements and stable isotopes using inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry techniques coupled with chemometric methods, especially the LDA method, is a good approach for improving the authentication of a diverse range of tea. The present study contributes toward generalizing the use of fingerprinting mineral elements and stable isotopes as a promising tool for testing the geographic roots of tea and food worldwide. © 2020 Society of Chemical Industry.

摘要

背景

迫切需要加强对具有地域标志性的食品的检测和认证,并利用具有区分性的科学技术对其进行监管和验证。本研究采用多元素和稳定同位素分析相结合的方法,为提高不同产地茶叶样品的鉴别能力提供了一种新的化学计量学方法。采用电感耦合等离子体质谱法和电感耦合等离子体发射光谱法对茶叶样品进行多元素和稳定同位素分析,利用永川秀芽茶样进行实验验证,分别采用主成分分析(PCA)、层次聚类分析(HCA)、偏最小二乘判别分析(PLS-DA)、基于反向传播的人工神经网络(BP-ANN)和线性判别分析(LDA)等不同的化学计量学方法进行了比较。

结果

电感耦合等离子体质谱法和电感耦合等离子体发射光谱法容易区分茶叶样品的产地。然而,两种无监督学习方法(PCA 和 HCA)的聚类能力比三种有监督学习方法(PLS-DA、BP-ANN 和 LDA)差。BP-ANN 和 LDA 的识别和预测能力均为 100%,优于 PLS-DA。Sr 和 Cd 是成功分类茶叶样品产地的标记物。在“盲”数据集的验证下,BP-ANN 和 LDA 方法的预测准确率均大于 90%。LDA 方法表现出最好的性能,准确率为 100%。

结论

总之,采用电感耦合等离子体质谱法和电感耦合等离子体发射光谱法结合化学计量学方法(特别是 LDA 方法)测定矿物元素和稳定同位素是提高茶叶真实性鉴别的一种很好的方法。本研究为将指纹矿物元素和稳定同位素作为一种有前途的测试茶叶和全球食品产地的工具进行了推广。 © 2020 英国化学学会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验