Departamento de Ingeniería, Universidad Pública de Navarra, Campus Arrosadía s/n, E-31006, Pamplona, Spain.
CIBER-BBN, Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, C/Poeta Mariano Esquillor s/n, 50018, Zaragoza, Spain.
Ann Biomed Eng. 2020 Jun;48(6):1805-1820. doi: 10.1007/s10439-020-02493-1. Epub 2020 Mar 25.
The main goal of this study is the quantification of the particle transport and deposition within the human airways during light, normal and exercise breathing conditions using the computational fluid dynamics. In particular we presented a comparison between healthy and stented airways. The considered tracheobronchial model is based on the Weibel symmetric model in which we have inserted the Dumon prosthesis at different locations and on the CT-based geometries of a healthy and a stented airway. The results indicate an important redistribution of the particle deposition locations. Local overdoses can be found in the proximal regions of the prostheses, independently of the breathing conditions, of the particle size and of the considered geometry. The presented work is aimed to contribute to the understanding of the particle deposition in the human lung and to improve drug-aerosol therapies. For patients that underwent airways reconstructive surgery, it can give detailed information about the deposition efficiency and it may help targeting specific airways regions.
本研究的主要目标是使用计算流体动力学定量研究人类气道在轻度、正常和运动呼吸条件下的颗粒传输和沉积。特别是,我们比较了健康气道和支架气道。所考虑的气管支气管模型基于对称的 Weibel 模型,其中我们在不同位置插入了 Dumon 假体,并基于 CT 对健康和支架气道的几何形状进行了考虑。结果表明颗粒沉积位置发生了重要的再分布。局部超剂量可以在假体的近端区域找到,而与呼吸条件、颗粒大小和所考虑的几何形状无关。目前的工作旨在有助于理解人类肺部中的颗粒沉积,并改善药物气溶胶治疗。对于接受气道重建手术的患者,它可以提供关于沉积效率的详细信息,并有助于针对特定的气道区域。