Sun Ya-Nan, Goktas Mustafa, Zhao Li, Adelhelm Philipp, Han Bao-Hang
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Institute of Technical Chemistry and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, D-07743 Jena, Germany; Department of Chemistry, Humboldt-University Berlin, Brook-Taylor-Straße 2, D-12489 Berlin, Germany.
J Colloid Interface Sci. 2020 Jul 15;572:122-132. doi: 10.1016/j.jcis.2020.03.063. Epub 2020 Mar 18.
An ultrafine tin dioxide/N, P-doped porous carbon (SnO/NPPC) nanocomposite is prepared through in-situ growth of tin dioxide (SnO) nanoparticles in N, P-doped porous carbon (NPPC). Owing to the in-situ growth method, the size of SnO nanoparticles in SnO/NPPC is quite small and uniform (generally less than 5.0 nm). NPPC provides a support and a conductive carbon skeleton for the SnO nanoparticles. The small SnO nanoparticles are less likely to aggregate during the discharge-charge process due to the presence of Sn-O-C bonding and nanoconfinement effect of SnO nanoparticles in carbon matrix. The N and P doping can provide abundant defects to facilitate the penetration of Li or Na into the interior of the electrode. In addition, the presence of Sn-N bonding can further improve the electrochemical properties of the electrodes. Thus, as an anode material for lithium-ion batteries, SnO/NPPC possesses an enhanced rate performance, an excellent cycling stability, and a high initial Coulombic efficiency. The structure of the ultrafine SnO nanoparticles is well maintained in cycled SnO/NPPC. Meanwhile, SnO/NPPC also possesses good electrochemical performance as an anode for sodium-ion batteries. The good electrochemical properties for SnO/NPPC materials can be ascribed to the synergetic effect between small SnO nanoparticles and NPPC.
通过在氮、磷掺杂的多孔碳(NPPC)中原位生长二氧化锡(SnO)纳米颗粒,制备了一种超细二氧化锡/氮、磷掺杂多孔碳(SnO/NPPC)纳米复合材料。由于采用原位生长方法,SnO/NPPC中SnO纳米颗粒的尺寸非常小且均匀(通常小于5.0纳米)。NPPC为SnO纳米颗粒提供了支撑和导电碳骨架。由于存在Sn-O-C键以及SnO纳米颗粒在碳基体中的纳米限域效应,小尺寸的SnO纳米颗粒在充放电过程中不太可能聚集。氮和磷掺杂可以提供大量缺陷,便于锂或钠渗透到电极内部。此外,Sn-N键的存在可以进一步改善电极的电化学性能。因此,作为锂离子电池的负极材料,SnO/NPPC具有增强的倍率性能、优异的循环稳定性和高初始库仑效率。在循环后的SnO/NPPC中,超细SnO纳米颗粒的结构得到了很好的保持。同时,SnO/NPPC作为钠离子电池的负极也具有良好的电化学性能。SnO/NPPC材料良好的电化学性能可归因于小尺寸SnO纳米颗粒与NPPC之间的协同效应。