Felker Peter M, Bačić Zlatko
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA.
Department of Chemistry, New York University, New York, New York 10003, USA.
J Chem Phys. 2020 Mar 31;152(12):124103. doi: 10.1063/5.0002515.
We present a rigorous and comprehensive theoretical treatment of the vibrational dynamics of benzene-HO and benzene-HDO dimers, where the quantum bound-state calculations of the coupled intra- and intermolecular vibrational states of the dimers are complemented by the quantum simulations of their infrared (IR) and Raman spectra utilizing the computed eigenstates. Apart from taking benzene to be rigid, the methodology for the nine-dimensional (9D) vibrational quantum calculations introduced in this study is fully coupled. The approach yields the intramolecular vibrational fundamentals and the bend (ν) overtone of HO and HDO in the complex, together with the low-lying intermolecular vibrational states in each of the intramolecular vibrational manifolds considered. Following the recently introduced general procedure [P. M. Felker and Z. Bačić, J. Chem. Phys. 151, 024305 (2019)], the full 9D vibrational Hamiltonian of the dimer is divided into a 6D intermolecular Hamiltonian, a 3D intramolecular Hamiltonian, and a 9D remainder term. A 9D contracted product basis is constructed from the low-energy eigenstates of the two reduced-dimension Hamiltonians, and the full vibrational dimer Hamiltonian is diagonalized in it. The symmetry present in the dimers is exploited to reduce the Hamiltonian matrix to a block diagonal form. Guided by the findings of our earlier study referenced above, the 6D intermolecular contracted bases for each symmetry block include only 40 eigenstates with energies up to about 225 cm, far below the stretch and bend fundamentals of HO and HDO, which range between 1400 cm and 3800 cm. As a result, the matrices representing the symmetry blocks of the 9D Hamiltonian are small for the high-dimensional quantum problem, 1360 and 1680 for the HO and HDO complexes, respectively, allowing for direct diagonalization. These calculations characterize in detail the HO/HDO intramolecular vibrations, their frequency shifts, and couplings to the large-amplitude-motion intermolecular vibrational sates. The computed IR spectra of the two complexes in the OH-stretch region, as well as the intermolecular Raman spectra, are compared to the experimental spectra in the literature.
我们对苯 - HO和苯 - HDO二聚体的振动动力学进行了严谨且全面的理论处理,其中二聚体分子内和分子间耦合振动状态的量子束缚态计算,通过利用计算出的本征态对其红外(IR)和拉曼光谱进行量子模拟得到补充。除了将苯视为刚性分子外,本研究中引入的九维(9D)振动量子计算方法是完全耦合的。该方法得出了复合物中HO和HDO的分子内振动基频以及弯曲(ν)泛音,以及所考虑的每个分子内振动流形中的低能分子间振动状态。按照最近引入的通用程序[P. M. Felker和Z. Bačić,《化学物理杂志》151, 024305 (2019)],二聚体的完整9D振动哈密顿量被分为一个6D分子间哈密顿量、一个3D分子内哈密顿量和一个9D余项。从两个降维哈密顿量的低能本征态构建一个9D收缩乘积基,并在其中对完整的二聚体振动哈密顿量进行对角化。利用二聚体中存在的对称性将哈密顿矩阵简化为块对角形式。以上面提到的我们早期研究结果为指导,每个对称块的6D分子间收缩基仅包括40个能量高达约225 cm的本征态,远低于HO和HDO的伸缩和弯曲基频,其范围在1400 cm至3800 cm之间。因此,对于高维量子问题,代表9D哈密顿量对称块的矩阵很小,HO和HDO复合物分别为1360和1680,允许直接对角化。这些计算详细表征了HO/HDO分子内振动、它们的频率位移以及与大幅度运动分子间振动状态的耦合。将计算得到的两种复合物在OH伸缩区域的红外光谱以及分子间拉曼光谱与文献中的实验光谱进行了比较。