Suppr超能文献

别构 PARP-1 保留在 DNA 断裂处的结构基础。

Structural basis for allosteric PARP-1 retention on DNA breaks.

机构信息

Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

Département de Biochimie and Médecine Moléculaire, Faculté de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada.

出版信息

Science. 2020 Apr 3;368(6486). doi: 10.1126/science.aax6367.

Abstract

The success of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors (PARPi) to treat cancer relates to their ability to trap PARP-1 at the site of a DNA break. Although different forms of PARPi all target the catalytic center of the enzyme, they have variable abilities to trap PARP-1. We found that several structurally distinct PARPi drive PARP-1 allostery to promote release from a DNA break. Other inhibitors drive allostery to retain PARP-1 on a DNA break. Further, we generated a new PARPi compound, converting an allosteric pro-release compound to a pro-retention compound and increasing its ability to kill cancer cells. These developments are pertinent to clinical applications where PARP-1 trapping is either desirable or undesirable.

摘要

聚(ADP-核糖)聚合酶 1(PARP-1)抑制剂(PARPi)在癌症治疗中的成功与其在 DNA 断裂部位捕获 PARP-1 的能力有关。尽管不同形式的 PARPi 均靶向酶的催化中心,但它们捕获 PARP-1 的能力存在差异。我们发现几种结构不同的 PARPi 驱动 PARP-1 的变构作用,以促进从 DNA 断裂处释放。其他抑制剂驱动变构作用以保留 PARP-1 在 DNA 断裂处。此外,我们生成了一种新的 PARPi 化合物,将变构促进释放的化合物转化为变构促进保留的化合物,并提高其杀死癌细胞的能力。这些进展与 PARP-1 捕获是可取还是不可取的临床应用相关。

相似文献

1
Structural basis for allosteric PARP-1 retention on DNA breaks.
Science. 2020 Apr 3;368(6486). doi: 10.1126/science.aax6367.
2
Mechanistic Dissection of PARP1 Trapping and the Impact on In Vivo Tolerability and Efficacy of PARP Inhibitors.
Mol Cancer Res. 2015 Nov;13(11):1465-77. doi: 10.1158/1541-7786.MCR-15-0191-T. Epub 2015 Jul 27.
3
PARP trapping is governed by the PARP inhibitor dissociation rate constant.
Cell Chem Biol. 2024 Jul 18;31(7):1373-1382.e10. doi: 10.1016/j.chembiol.2023.12.019. Epub 2024 Jan 22.
4
A PARP2 active site helix melts to permit DNA damage-induced enzymatic activation.
Mol Cell. 2025 Mar 6;85(5):865-876.e4. doi: 10.1016/j.molcel.2025.01.004. Epub 2025 Jan 30.
5
Novel modifications of PARP inhibitor veliparib increase PARP1 binding to DNA breaks.
Biochem J. 2024 Mar 20;481(6):437-460. doi: 10.1042/BCJ20230406.
6
Clinical PARP inhibitors allosterically induce PARP2 retention on DNA.
Sci Adv. 2023 Mar 24;9(12):eadf7175. doi: 10.1126/sciadv.adf7175.
10
Rapid Detection and Signaling of DNA Damage by PARP-1.
Trends Biochem Sci. 2021 Sep;46(9):744-757. doi: 10.1016/j.tibs.2021.01.014. Epub 2021 Mar 3.

引用本文的文献

4
Discovery of a Novel [6-6-5-5-6] Pentacyclic Tetrahydrocyclopentaphthalazinone as a Promising PARP Inhibitor Scaffold.
ACS Med Chem Lett. 2025 Apr 3;16(5):776-783. doi: 10.1021/acsmedchemlett.4c00603. eCollection 2025 May 8.
6
Joining of DNA breaks- interplay between DNA ligases and poly (ADP-ribose) polymerases.
DNA Repair (Amst). 2025 May;149:103843. doi: 10.1016/j.dnarep.2025.103843. Epub 2025 May 2.
7
Targeting DNA damage sensors for cancer therapy.
DNA Repair (Amst). 2025 May;149:103841. doi: 10.1016/j.dnarep.2025.103841. Epub 2025 May 2.
9
BRCA2 prevents PARPi-mediated PARP1 retention to protect RAD51 filaments.
Nature. 2025 Apr;640(8060):1103-1111. doi: 10.1038/s41586-025-08749-x. Epub 2025 Mar 26.
10
Duplexed CeTEAM drug biosensors reveal determinants of PARP inhibitor selectivity in cells.
J Biol Chem. 2025 Apr;301(4):108361. doi: 10.1016/j.jbc.2025.108361. Epub 2025 Feb 26.

本文引用的文献

1
PARP inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer.
J Clin Invest. 2019 Mar 1;129(3):1211-1228. doi: 10.1172/JCI123319. Epub 2019 Feb 11.
2
PARP1 Trapping by PARP Inhibitors Drives Cytotoxicity in Both Cancer Cells and Healthy Bone Marrow.
Mol Cancer Res. 2019 Feb;17(2):409-419. doi: 10.1158/1541-7786.MCR-18-0138. Epub 2018 Nov 14.
3
Synthetic lethal therapies for cancer: what's next after PARP inhibitors?
Nat Rev Clin Oncol. 2018 Sep;15(9):564-576. doi: 10.1038/s41571-018-0055-6.
4
Coupling bimolecular PARylation biosensors with genetic screens to identify PARylation targets.
Nat Commun. 2018 May 22;9(1):2016. doi: 10.1038/s41467-018-04466-4.
10
Modeling Therapy Resistance in -Mutant Cancers.
Mol Cancer Ther. 2017 Sep;16(9):2022-2034. doi: 10.1158/1535-7163.MCT-17-0098. Epub 2017 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验